Millimeter Wave CMOS Power Amplifiers

Professor Ali M. Niknejad Berkeley Wireless Research Center University of California, Berkeley

Outline

Applications / Performance Requirements
PA Amplifier Design Examples
Complete "Digital" CMOS PA Transmitter

The "Last Inch"

Universal Mobility

Automotive Radar

- Short range radar for parking assist, object detection
- Long range radars for automatic cruise control, low visibility (fog) object detection, impact warning
- Long range vision: automatic driver

CMOS Technology Trends

Measured

ITRS+projection

Layout Optimization (90nm)

Berkelev Wirele Research Center

■ MSG 60GHz = 8.5 dB, NFmin ~ 3-4 dB

- f_{max} = 300 GHz (*extrapolated*), f_{T} = 100 GHz
- Highest reported $f_{\text{max}}/f_{\text{T}}=3$ ratio for CMOS!

60 GHz Link Budget

Component	Contribution	Comment		
Background Noise	-174 dBm/Hz	kT at room temp.		
Noise BW	93 dB	2 GHz		
Noise Figure	10 dB	RX noise figure		
SNR at input	10 dB	Typ. Digital Mod.		
Noise at input	-61 dBm	(-174 + 93 + 10 + 10)		
Antenna Gain	-67 dBm	6 dBi		
Path Loss	74 dB	2-m LOS		
Other Loss	10 dB	Reflection from wall		
Tx Power	17 dBm	-67 dBm + 84 dB		
PA output power	11 dBm	6 dBi gain in antenna		

60 GHZ PA DESIGNS

24. GHz WiMAX CMOS PA's

- Psat > 30 dBm, P-1dB > 27.7 dBm, PAE = 33%
- OFDM output EVM < -26dB with 22.7 dBm output power
- Fully FCC compliant, no external components

PA Device Selection

- Need a large device for high power → large parasitics → lower gain.
 Optimum finger size for stable gain.
- Using too many parallel devices leads to low gain

PA Bias / Class of Operation

- Gain of device drops quickly requiring operating in the strong inversion regime
- Class AB biasing
 does not provide
 sufficient gain (PAE
 too low)

Gain vs. Output Power Tradeoff

Output Stage Degeneration (I)

Output Stage Degeneration (II)

Degeneration also increases stability, but could reduce the gain significantly!

Output Stage Network

1

- The first Stage is optimized to give the maximum Gain
- Round-table device was used to achieve the maximum available gain (MSG=8.5dB)

PA Schematic

- Two-stage design single-ended design
- CPW matching, coupling caps (embedded)
- 40µm driver, 80µm output stage
- Custom bypass for low inductance

Chip Micrograph

60 GHz PA Measurements

Research Center

Current Combing Power Amplifier

Berkeley Wireless Research Center

Current Combining Power Amplifier

	2-Way	4-Way	
Output P _{1dB}	10.1 dBm (10.5)	12.1 dBm (12.8)	
Output P _{saturation}	11.6 dBm (12.2)	14.2 dBm (15.0)	
Power Gain	8.2 dB (9.0)	4.2 dB (6.2)	
1dB compression drain efficiency	12.6% (13.8%)	11.2 % (13.2)	Meas (Sim)
Saturation efficiency	17.7% (20.5%)	18.1 % (20.7)	
Maximum PAE	11.5% (12.5%)	5.8 % (9.8)	

RF PAD

Broadband PA

- Two-stage transformer coupled PA
- Pseudo-differential design
- Transformer used for tuning, AC coupling, and biasing

Transformers Scale to mm-Waves

- Isolation, impedance matching, biasing ...
 - Good insertion loss
- Compact layout compared to T-lines

Berkeley Wirele Research Cente

Transformer Design

Impedance Matching

PA Die Photo

- Area: 0.25 mm²
- Small area due to transformers

Measured S-Parameters

Power Measurements

Improved Three-Stage PA

- Optimized driver stage (smaller transistors) for higher gain
- First driver stage cascode configuration for slightly higher gain and unconditional stability at 60GHz

Three-Stage PA Measurements

Measured Output Power vs Frequency

- Driver design critical since MSG at mm-wave frequency low → simultaneous gain-output power based optimization necessary
- Measured PAE close to 15% (nearly double the two-stage design) with 14dB of power gain at 60GHz

PA Output / PAE versus Supply

- As expected, output power increases with supply.
- Reliability is a major concern for CMOS devices. In our design we operate the CMOS PA at a lower supply voltage.

60 GHZ TRANSMITTER

Transceiver Block Diagram

Chip Layout

Berkeley Wireless Research Center

Modulator and PA

Measured Eye Diagram

- Simulated modulator output power: -2.3dBm
 - Power from just I or Q is -1dBm \rightarrow loading
- Measured PA output power: ~10dBm

Wireless Test

- Im distance (+ ~2m cables), 25dBi horn antennas
- Received up to 4Gb/s at 10⁻¹¹

Conclusion

- CMOS device have F_t ~ mm-wave range. Low voltage devices make mm-wave operation challenging.
- Optimized layout results in $F_{max} \sim 2-3 F_t$
- CMOS power amplifiers with Psat ~ 12 dBm can be realized in 90nm technology (1V supply). Higher power levels is challenging.
- A complete transceiver is demonstrated in 60 GHz with record energy consumption
- CMOS of tomorrow will enable dream of millions of RF/ mm-wave transistors allowing EM to bits

Acknowledgements

60 GHz Research Team:

- Mounir Bohsali, Babak Heydari, Ehsan Adabi, Bagher Afshar, Debopriyo Chowdhury, Amin Arbabian, Maryam Tabesh, Jung-Dong Park
- DARPA TEAM Project / C2S2 Marco Center
- ST Microelectronics
- BWRC Member Companies

