Gigahertz Signal Processor: RF-Domain Power Amplifier Linearization

Olivier Charlon
September 14, 2009
Scintera Overview

- Technology
 - Provide *analog* signal processing platform delivering higher performance *and* lower power consumption than traditional DSP solutions
 - Improve ops/sec/watt > 10x in wide range of applications

- Initial Focus
 - RF Power Amplifier Linearizer = RFPAL
 - Offer high performance linearization for infrastructure PA’s and other applications

- Headquartered in Sunnyvale
 - World class team in signal processing/systems, RF/analog IC development, RF applications

- Investors
 - August Capital, Sevin Rosen, Kleiner Perkins Caufield & Byers, Ridgewood Capital
RFPAL: Digitally Controlled Analog Processor

- Digitally-driven Adaptive Analog Signal Processor in CMOS
- Firmware Controlled: Programmable/Flexible
- Optimal split of RF, analog and digital
- Fully adaptive
- RFin/RFout solution
- Broadband
- Low power
- Low complexity/cost
RFPAL replaces functionality of red blocks with single IC

Reduced Complexity & Cost
- Replaces downconverter, ADC, & Baseband DPD
- Reduces software burden for current platform & upgrades
- Supports system modularity

RF Power Amplifier Linearizer (RFPAL)
- Standards, modulation-agnostic
- Continuously adaptive
- Wideband performance
- Supports system modularity
- Lower cost & complexity
- Lower power
RFPAL Enables Distributed Architectures…

Adapted from Ericsson, “Power Systems Efficiency in Wireless Communications”
… and Simpler Repeater Architectures
RFPAL: Key Parameters

- Operating Frequency: 700-2700 MHz
- Bandwidth: >250 MHz Linearization Bandwidth
- Power Consumption: <500 mW Average
- Temperature Range: -40 to +85 °C
- Linearization
 - Class AB and Doherty Configurations + Others
 - Short and Long Term Memory Effects
 - Continuously Adaptive (<3s adaptation time)
 - Independent of PA Output Power
- Modulation Agnostic
 - WCDMA, WiMax, LTE, TD-SCDMA, CDMA, MC-GSM, etc.
- Single chip solution implemented in standard CMOS: 9x9 mm 64 lead QFN
- Serial bus control or stand-alone autonomous operation
 - Extended functions for PA monitoring and advanced PA control
 - Field Programmable/upgradeable
Measured Performance: Doherty, 1-carrier WCDMA, 9.6 dB PAR

NXP BLF6G27-150P at 2655 MHz, 150 device, integrated

Pout = 42.6 dBm

ACLRL2 (dBc) before/after* correction vs. PA output power (dBm)

PA output power (dBm/30 kHz) vs. frequency (MHz)*

* 0=before, 1=after
Measured Performance:
Doherty, 2-carrier WCDMA, 6.5 dB PAR

SN99 hw1.6 PAM078 WCDMA2-11#6.5 2655.0 MHz 09/09/17 12:39:06

ACLR1/2 (dBc) before/after* correction vs. PA output power (dBm)

BO=0.5 SN99 hw1.6 PAM078 WCDMA2-11#6.5 2655.0 MHz 09/09/17 12:39:06

PA output power (dBm/30 kHz) vs. frequency (MHz)*

NXP BLF6G27-150P at 2655 MHz, 150 device, integrated
Pout = 45.7 dBm

* 0=before, 1=after
Measured Performance:
Doherty, 4-carrier WCDMA, 7.75 dB PAR

NXP BLF6G27-150P at 2655 MHz, 150 device, integrated
Pout = 44.5 dBm

ACLR1/2 (dBc) before/after* correction vs. PA output power (dBm)

PA output power (dBm/30 kHz) vs. frequency (MHz)*

* 0=before, 1=after
Measured Performance: Doherty, 3-carrier WCDMA, 7 dB PAR

Freescale MRF7S21080 at 2140 MHz, 080 device
Pout = 45.3 dBm

ACLR1/2 (dBc) before/after* correction vs. PA output power (dBm)

PA output power (dBm/30 kHz) vs. frequency (MHz)*

* 0=before, 1=after
Measured Performance:
Doherty, 1-carrier WCDMA, 6.5 dB PAR

Freescale MRF7S21080 at 2140 MHz, 080 device
Pout = 46.4 dBm

ACLR1/2 (dBc) before/after* correction vs.
PA output power (dBm)

PA output power (dBm/30 kHz) vs.
frequency (MHz)*

Freescale MRF7S21080 at 2140 MHz, 080 device
Pout = 46.4 dBm

* 0=before, 1=after
Measured Performance: Doherty, 4-carrier WCDMA, 8 dB PAR

ACLR1/2 (dBc) before/after* correction vs. PA output power (dBm)

Freescale MRF7S21080 at 2140 MHz, 080 device
Pout = 43.9 dBm

PA output power (dBm/30 kHz) vs. frequency (MHz)*

* 0=before, 1=after
Measured Performance: Class AB, 6-carrier WCDMA - 8.5 dB PAR

ACLR1/2 (dBc) before/after* correction vs. PA output power (dBm)

PA output power (dBm/30kHz) vs. frequency (MHz)*

Freescale MRF7S21110 at 2140 MHz, 080 device
Pout = 42.3 dBm

* 0=before, 1=after
Measured Performance:
Class AB, 1-carrier LTE – 5 MHz - 7 dB PAR

Freescale MW7IC2725N at 2655 MHz, 080 device
Pout = 37.1 dBm

* 0=before, 1=after

ACLR1/2 (dBc) before/after* correction vs. PA output power (dBm)

PA output power (dBm/30 kHz) vs. frequency (MHz)*
Measured Performance:
Class AB, 1-carrier LTE – 20 MHz – 6.4 dB PAR

ACLR1/2 (dBc) before/after* correction vs. PA output power (dBm)

Freescale MW7IC2725N at 2655 MHz, 080 device
Pout = 37.9 dBm

PA output power (dBm/30 kHz) vs. frequency (MHz)*

* 0=before, 1=after
Summary: Gigahertz Signal Processor

- Ideal transmitter linearization solution
 - Low Cost
 - Low Power
 - Low Complexity
 - High Flexibility

- Applicable across a broad range of output powers
 - <1 W to >80 W
 - Class AB and Doherty

- Applicable across a broad range of solutions
 - Distributed Antenna Systems
 - MIMO Systems
 - Traditional in-cabinet amplifiers
 - Remote Radio Units (RRU)
 - Tower Mounted Power Amplifiers
 - Repeaters and Booster Amplifiers
 - Micro/Pico Basestations
 - Active Antenna Systems
Summary: RFPAL

- Operating Frequency
 - One part covers all applications (700 to 2700 MHz)

- Power Consumption
 - RFPAL power consumption < 500 mW

- Ease of Use
 - Simple BoM
 - Simple system
 - Modular solution reduces development and verification cost/time
 - ONLY solution that enables standalone linearized PA module

- BoM Savings
 - Single chip vs. complex multi IC solution