Pulsed Load Modulation (PLM) 0.35µm pHEMT Power Amplifier

Shuhsien Liao and Yuanxun Ethan Wang

Digital Microwave Lab Electrical Engineering Department UCLA

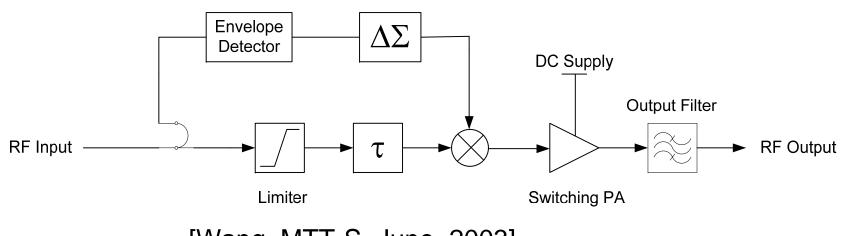
Digital Microwave Lab 🕅

Outline

Background
Pulsed Load Modulation (PLM)
2GHz PLM PA module
Testing Results – WCDMA
Conclusions

Background

Digital RF transmitters have been envisioned in the past decade, due to their potential for

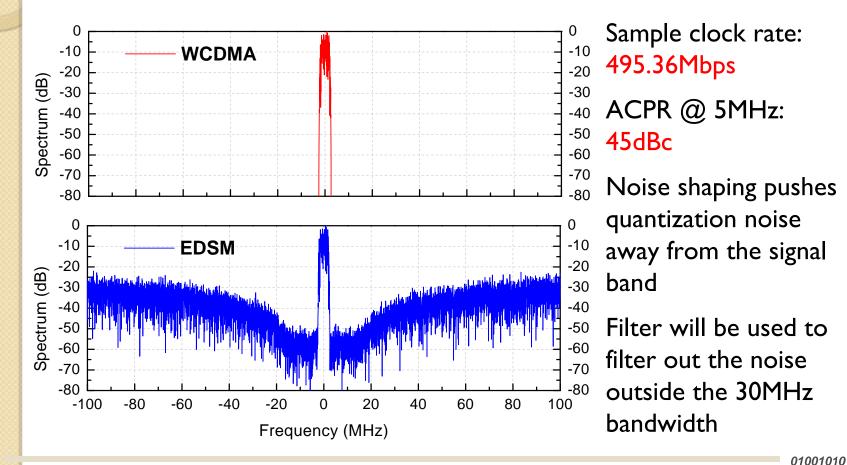

- Synthesizing and retaining digital modulations precisely
- High efficiency amplification through the use of switched mode PA

Delta-sigma modulation based transmitter architectures [Jayarama et. al. MGWL, Mar. 1998]

- Quantize the RF signals into pulses
- Amplify the pulses through switched mode amplifiers
- Restore original non-constant-envelope through a filter at the output

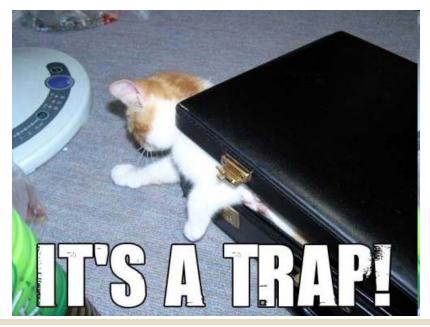
Envelope Delta Sigma Modulation (EDSM)

[Wang, MTT-S, June. 2003]


- •Low sampling clock rate only the envelope is oversampled
- •Gate control, no large current voltage regulator
- •Minimum delay mismatch between AM and PM path
- •Wide bandwidth and can be scaled to millimeter wave PA

Digital Microwave Lab 🕥

An Example for EDSM


single channel WCDMA signal (10.8dB PAR)

High Efficiency?

- High-Q Bandpass filter is needed to filter out the quantization noise
- In general, a filter with bandwidth narrower than the PA output behaves like a complex, time-varying load impedance to the PA

Efficiency for Non-Constant Envelope

For a single-ended amplifier such as a Class-B, E & F transistor drain (collector) efficiency is given by

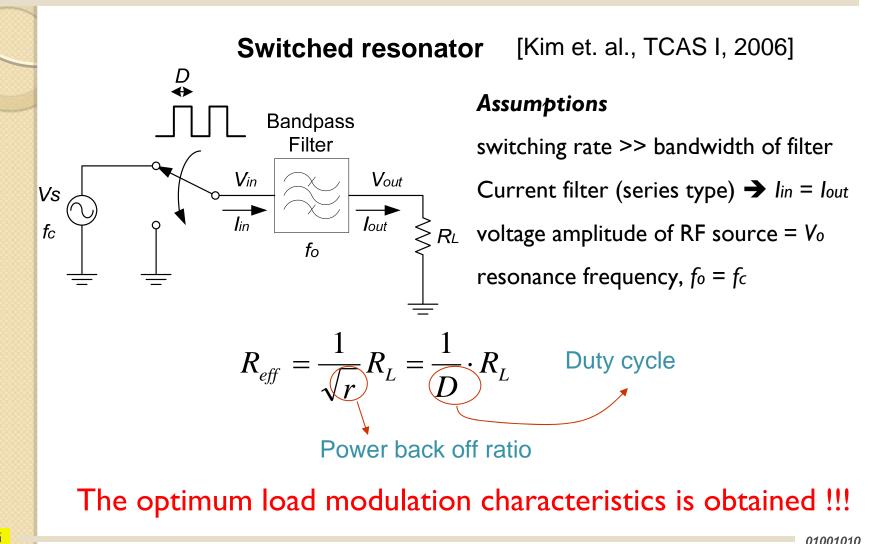
$$\eta = \eta_{\max} \frac{V_{RF}}{V_{DC}} = \eta_{\max} \cdot \sqrt{r}$$
 -Power backoff ratio

To prevent the efficiency drop, one needs either <u>maintain the V_{RF} </u> or <u>decrease</u> V_{DC} accordingly when the output power drops

Drain (collector) modulations (Kahn techniques, ET)

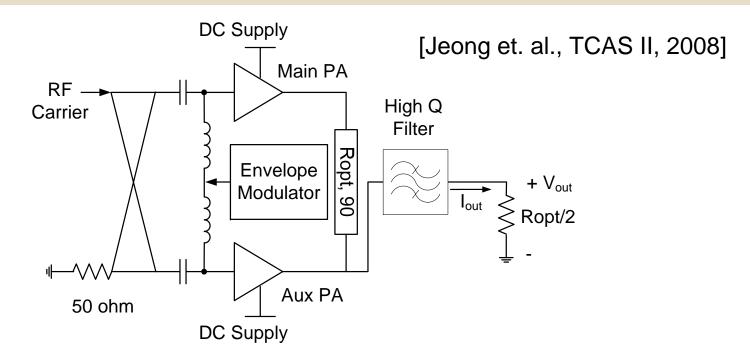
$$V_{DC} = V_{RF}$$

Load modulations


(Doherty's, Chireix's outphasing)

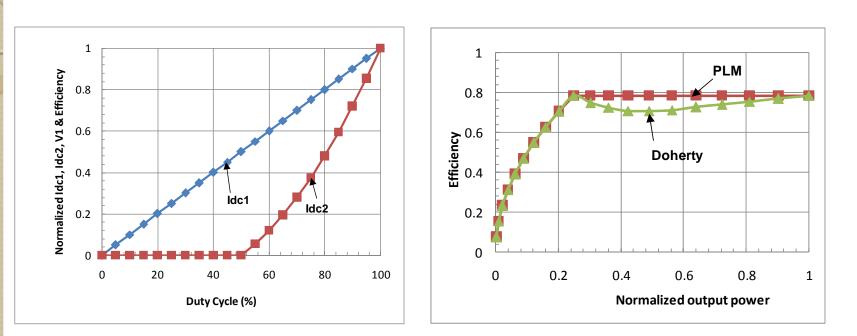
$$R_L = \frac{R_{opt}}{r}$$

Digital Microwave Lab


 $\mathbb{A}^{01001010}$

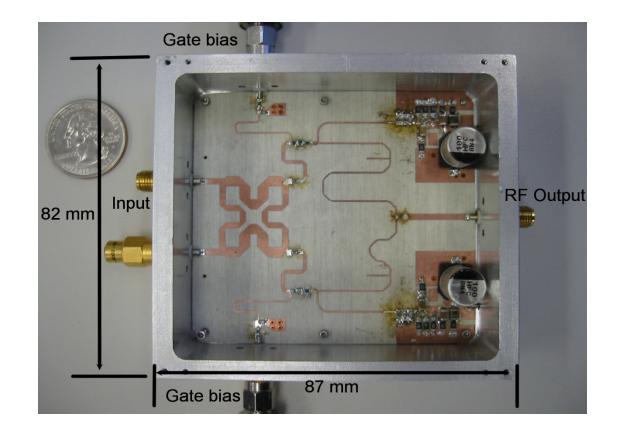
Pulsed Load Modulation (PLM)

A Practical Implementation of PLM



- •Balanced amplifier to simplify input matching
- •Both PAs are controlled by the same envelope modulator
- •on-state : Both PAs remain saturated until 6 dB back off
- •off-state : Output impedance of Main PA transformed to RF short

Digital Microwave Lab ∧


Theoretical Efficiency vs. Output Power

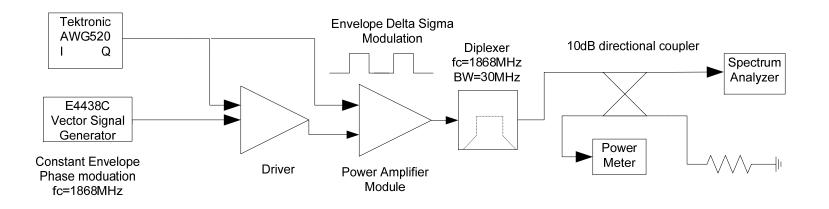
- I. I_{dcl} linearly proportional to duty cycle
- 2. I_{dc2} decreases to 0 when D=0.5
- 3. Both transistor remain in saturation when 0.5<D<I
- 4. Efficiency remain constant until D=0.5

I.9GHz PLM Amplifier Module

Made of a pair of 0.35um pHEMT devices from Triquint

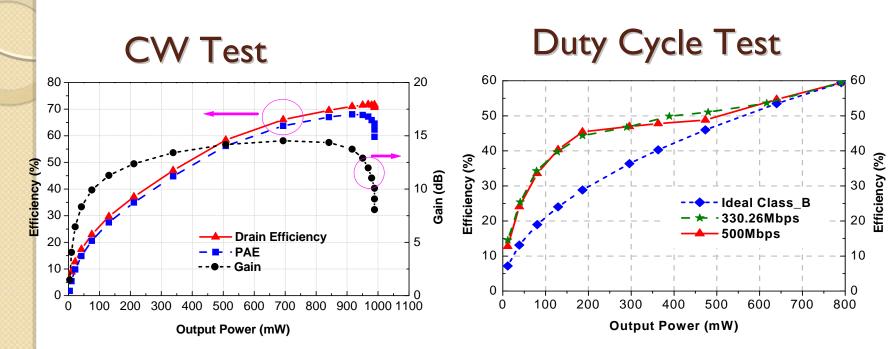
Measurement Setup

•CW test:


1.Drain Efficiency, PAE and Gain measurement without filter 2.Class B mode bias

•Duty cycle test:

1. Power amplifier module with Diplexer as high Q filter


2. Biased at Class B mode

3.10%~100% Duty cycle with different oversampling clock rate 4.Drain efficiency comparison to ideal Class B mode

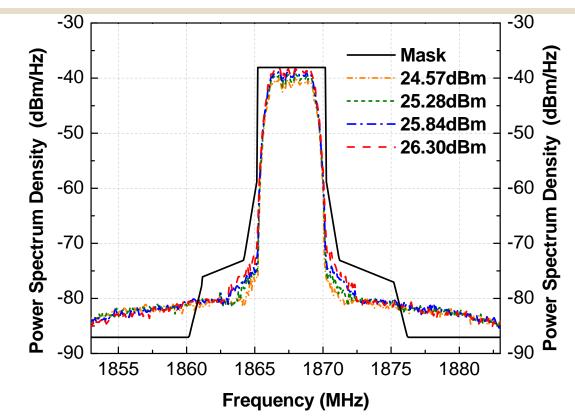
Digital Microwave Lab

Test Results

Maximum Drain Efficiency: 71% Output power : 29.62dBm Gain: 13.74dB Maximum Drain Efficiency:59.5% Output power : 29dBm Gain:12.1dB

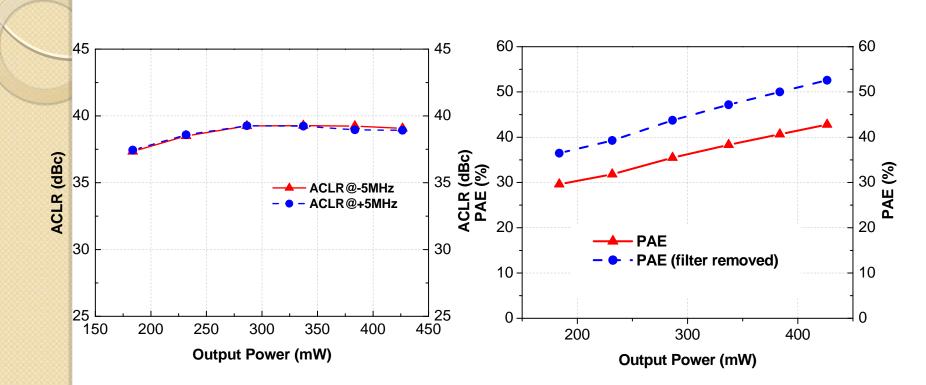
0.8dB filter loss is included !

Digital Microwave Lab MM



Test of WCDMA Modulations

- A single channel WCDMA signal without PAR reduction is used (PAR=10.8dB) as the testing signal
- Envelop and phase modulation is separated in software
- DSM is applied to the envelop signal in software, output is transferred to the AWG digital outputs
- Output power is varied by adjusting the input of DSM, not the output of AWG or the carrier power input to the PA
- IQ components of phase modulations are sent the analogue outputs of AWG and then modulated on the carrier through the VSG


WCDMA Test Results

Quantization noise removed by filter to restore linearity ~39 dBc ACPR @ 5MHz, without additional linearization ~43% PAE (filter loss included) 52.6% PAE (filter loss de-embedded)

PAE&ACLR vs. Output Power

•Power efficiency increase with the output power

•ACLR remains stable over a certain range of output power

Summary of WCDMA Testing results

EDSM experimental result (filter loss de-embedded)

Sampling Clock	495.36Mbps	
OSR	8	
P _{out,peak}	27.1dBm	
PAE _{peak}	52.6%	
Drain efficiency	58.3%	
ACLR@-5MHz	39dBc	
ACLR@+5MHz	38.9dBc	
ACLR@-10MHz	42.86dBc	
ACLR@+10MHz	42.79dBc	

Comparison with Other Techniques

Reference	Enhancement Scheme	Output power	PAE	Drain Efficiency	ACLR
This work	EDSM+PLM	27.1dBm	52.6%	58.3%	39dBc@5MHz <u>42.8dBc</u> @10MHz
[1]	Doherty	35.13dBm	42.7%	-	27dBc@2.5MHz -
	Doherty+DPD	35.13dBm	41.5%	-	49.6dBc@2.5MHz -
[2}	Doherty+DPD	31.5dBm	-	41.6%	29dBc@5MHz 31dBc@10MHz
[3]	ET+DPD	41.5dBm	47%	49%	48dBc@5MHz 53dBc@10MHz

[1]J. Moon, J. Kim, I. Kim and B. Kim, "Highly efficient three-way saturated Doherty Amplifier with digital feedback predistortion," *IEEE <u>Microwave and Wireless Components Letters</u>, Aug. 2008.*

[2]W. C. E. Neo, J. Qureshi, M. J. Pelk, J. R. Gajadharsing and L. C. N. de Vreede, "A mixed-signal approach towards linear and efficient n-way Doherty amplifiers," *IEEE Trans. Microwave Theory & Tech.*,, May. 2007.

[3]D. Kimball, K. Myoungbo, P. Draxler, J. Jinseong, H. Chin, C. Steinbeiser, T. Landon, O. Krutko, L. Larson and P. Asbeck, "High Efficiency WCDMA Envelope Tracking Base-Station Amplifier Implemented with GaAs HVHBTs," IEEE Compound Semiconductor Integrated Circuits Symposium, Oct. 2008.

Conclusions

PLM is able to improve the power efficiency of PA under non-constant-envelope modulations with reasonable linearity performance out-ofthe-box

 Digital pre-distortion or digital feedback (including the PA in the Delta-Sigma loop) may be used for better linearity

Suited for broadband, high PAR applications