A Feedforward Amplifier using a Modulation Pilot and Bi-Orthogonal Demodulation for Loop Alignment Control

R. Neil Braithwaite Powerwave Technologies

Goal

- Linear amplification of RF signals with large instantaneous bandwidths.
 - 100 MHz BW planned for LTE-Advanced.
- Pilot-based adaptive feedforward compensation.
 - Out-of-band pilots measurements are too far away from the actual signal for large BW's.
 - In-band pilots are acceptable.
- Reasonable cost.

- Implement a modulation pilot approach.

Other Goal

• Seeking collaboration.

- The math shows potential for LTE.
- Need to build a prototype and test.

• Warning.

- This technique has been abandoned numerous times.

Outline

Background

- Feedforward structure for linearization.

- Modulation pilot approach to 2nd loop adaptation.
 - Review original method proposed by Matz.
 - Discuss the short-comings which include biases.
- Propose a new modulation approach.

- Use bi-orthogonal demodulation to avoid biases.

• Summary

Feedforward Structure

• Two amplifiers

- Main amplifier (MA) determines the power capability.
- Error amplifier (EA) determines linearity of system.

• Optimization

– Adjust gains g_1 and g_2 to minimize the distortion power in the output signal z(t).

Feedforward Linearization

- First cancellation loop (Path 1A-1B).
 - Estimates of distortion d(t) generated within the MA path.
 - Select gain g_1 to cancel linear signal within $\varepsilon(t)$.
- Second cancellation loop (Path 2A-2B).
 - Select gain g_2 to cancel distortion within z(t).

Modulation Pilot (Matz, US Patent 5491454)

• Modulate 1st loop to control 2nd loop alignment.

- Two modulation pilots, γ_m and γ_{ϕ} (sine waves, ω_m and ω_{ϕ}). - Control (m₂, ϕ_2) by demodulating $|z|^2$ with γ_m and γ_{ϕ} .

Modulation Pilot (Matz)

• Amplifier gain

- Main amplifier + coupling loss: G_o.
- Error amplifier + coupling losses: g_{EA}.
- First loop alignment
 - $g_{1,\text{static}} = \exp\{ m_1 + j \phi_1 \}$
 - γ_m and γ_{ϕ} are modulation pilots.

•
$$g_1 = g_{1,\text{static}} * \exp(\gamma_m + j \gamma_{\phi})$$

Second Loop (Matz)

- 2nd loop alignment.
 - Optimal alignment denoted by $g_{2,opt}$ where $g_{2,opt} * g_{EA} = 1$.
 - Actual misalignment denoted by $\delta_{2,actual}$.
 - $g_2 = \exp\{ m_2 + j \phi_2 \} = g_{2,opt} * \exp(-\delta_{2,actual}).$
- 2nd loop cancellation.

•
$$G_2 = (1 - g_2 * g_{EA}) \approx -\delta_{2,actual}$$

2nd Loop Misalignment Estimate (Matz)

- Measured estimate of misalignment: δ_2 .
 - $\operatorname{Re}\{\delta_2\} = k_m \int |z|^2 \gamma_m^* dt$
 - Im{ δ_2 } = k_{ϕ} $\int |z|^2 \gamma_{\phi}^* dt$
- where
 - $k_m^{-1} = |G_o|^2 [2 \int |x|^2 |\gamma_m|^2 dt]; \quad k_{\phi}^{-1} = |G_o|^2 [2 \int |x|^2 |\gamma_{\phi}|^2 dt]$

FF Output (Matz)

• FF output z(t)

- z(t) = linear signal + residual in-band pilot
- $z(t) = G_o * x(t) + \delta_2 * (\gamma_m + j \gamma_{\phi}) * G_o * x(t)$

Residual pilot

- Modulation index $|\gamma_m + j \gamma_{\phi}|$
- 2nd loop misalignment $|\delta_2|$.

Demodulation Offsets (Matz)

Demodulated squared magnitude of FF output

- $\int |z|^2 \gamma_m dt = |G_0|^2 * [A_1 + |\delta_2|^2 * (A_2 + A_6) + \text{Re}\{\delta_2\} * B_1]$
- $\int |z|^2 \gamma_{\phi} dt = |G_0|^2 * [A_3 + |\delta_2|^2 * (A_4 + A_5) + Im\{\delta_2\} * B_2]$

Offset terms

- $A_1 = \int |x|^2 \gamma_m^* dt$ • $A_2 = \int |x|^2 |\gamma_m|^2 \gamma_m^* dt$ • $A_3 = \int |x|^2 \gamma_\phi^* dt$ • $A_4 = \int |x|^2 |\gamma_\phi|^2 \gamma_\phi^* dt$ • $A_5 = \int |x|^2 |\gamma_m|^2 \gamma_\phi^* dt$ • $A_6 = \int |x|^2 |\gamma_\phi|^2 \gamma_m^* dt$
- A_1 and A_3 are the most significant offset terms. • $B_1 = 2 \int |x|^2 |\gamma_m|^2 dt > 0$ $B_2 = 2 \int |x|^2 |\gamma_{\phi}|^2 dt > 0$

Steady State Bias (Matz)

• Measured estimate of δ_2

- $\int |z|^2 \gamma_m dt / (B_1 * |G_0|^2) \approx (A_1 / B_1) + \text{Re}\{\delta_2\}$
- $\int |z|^2 \gamma_{\phi} dt / (B_2 * |G_0|^2) \approx (A_3 / B_2) + Im\{\delta_2\}]$

Steady state

- Alignment bias: $|\delta_{2,ss}| = |(A_1 / B_1) + j(A_3 / B_2)|$
- Second loop cancellation: $|G_{2,ss}| = |\delta_{2,ss}|$
- Important terms

•
$$A_1 = \int |x|^2 \gamma_m^* dt$$
; $A_3 = \int |x|^2 \gamma_{\phi}^* dt$

• $B_1 = 2 \int |x|^2 |\gamma_m|^2 dt$; $B_2 = 2 \int |x|^2 |\gamma_{\phi}|^2 dt$

Power Spectrum of |**x**|² **for DL-LTE**

- Assume $|\gamma| = |\gamma_m| = |\gamma_{\phi}| = 0.1$ and 1 kHz RBW
 - $|G_{2,ss}| = E[|\delta_{2,ss}|] \approx -35 \text{ dB} 20 \log|\gamma| = -15 \text{ dB}$
 - Residual pilot at FF output = -35 dB.

Summary (Matz)

Steady state offset

- Fundamental limitation of Matz approach.
- Pilots are not orthogonal to $|x|^2$.
- Distortion cancellation
 - Determined by steady state offset.
 - Can be improved by increasing pilot modulation level $|\gamma|$.

Residual pilot

- Determined by the power spectrum of |x|² and pilot frequency.
- Independent of pilot modulation level.
- Increases EVM of transmitted DL-LTE.

Avoiding Biases (Matz)

- Conditions on γ_m and γ_{ϕ} to avoid bias in g_2 .
 - $[A_1 \dots A_6] = [0 \ 0 \ 0 \ 0 \ 0].$
 - $[B_1 B_2] > [0 0].$
- In general, the conditions are not met.
 - $A_1 = 0$ and $B_1 > 0$ requires γ_m to be orthogonal to $|x|^2$.
 - $A_3 = 0$ and $B_2 > 0$ requires γ_{ϕ} to be orthogonal to $|x|^2$.
- Important terms
 - $A_1 = \int |x|^2 \gamma_m^* dt$; $A_3 = \int |x|^2 \gamma_{\phi}^* dt$
 - $B_1 = 2 \int |x|^2 |\gamma_m|^2 dt$; $B_2 = 2 \int |x|^2 |\gamma_{\phi}|^2 dt$

Modulation Pilot and Bi-orthogonal Demod.

• Alternative to Matz.

- Use separate pilots for modulation γ and demodulation γ_d .
- Select pilots to be bi-orthogonal to $|x|^2$.
- Digital controller.

Differences from Matz's Implementation

• Modulate g_1 along one dimension at a given time.

- Modulation direction θ .
- Fewer orthogonality conditions to fulfill.
- Select a modulation and demodulation pilot pair (γ, γ_d) such that

$$A_1 = \int |\mathbf{x}|^2 \gamma_d^* dt = 0$$
$$A_2 = \int |\mathbf{x}|^2 |\gamma|^2 \gamma_d^* dt = 0$$
$$B_1 = 2 \int |\mathbf{x}|^2 \gamma_d^* dt > 0.$$

• Choose γ_d as a function of $|\mathbf{x}|^2$ to fulfill orthogonality condition.

Bi-Orthogonal Pilot

- Select binary modulation pilot $\gamma = \pm \rho$.
 - Reduces orthogonality to one equation.
 - $A_2 = |\rho|^2 A_1$
- Select demodulation pilot γ_d
 - $\gamma_d(t) = \gamma(t)$ or 0 (masked).

•
$$\gamma \gamma_d^* = |\gamma_d|^2$$
 which makes $B_1 > 0$.

•
$$B_1 = {}_{t1} \int_{1}^{t2} |x|^2 |\gamma_d|^2 dt > 0.$$

• Adjust t_1 , t_2 , and masking of γ_d to make offset zero.

•
$$A_1 = {}_{t1} \int^{t2} |x|^2 \gamma_d^* dt = 0.$$

 Adjustments made in DSP after |x|² and |z|² have been digitized and captured.

Modulation and Demodulation Pilots

Integration interval adjusted so that

•
$$A_1 = {}_{t1} \int^{t2} |x|^2 \gamma_d^* dt = 0.$$

 Masking shown above reduces sensitivity to time misalignments between |x|² and |z|².

Alignment Update (Bi-Orthogonal Pilot)

• 2nd loop misalignment estimate

• $\Delta_2 = \operatorname{Re}\{\delta_2 * \exp(j\theta)\} = k_{t1} \int^{t_2} |z|^2 \gamma_d * dt$

•
$$\mathbf{k}^{-1} = |\mathbf{G}_0|^2 * {}_{t1} \int^{t2} |\mathbf{x}|^2 |\gamma_d|^2 dt$$

- 2nd loop alignment update
 - $g_2(t_{n+1}) = g_2(t_n) * [1 + \Delta_2 * exp(j\theta)]$
- Alternate modulation directions

•
$$\theta(t_{n+1}) = mod\{ \theta(t_n) + \pi/2, \pi \}$$

Challenges

- Square law responses, $|x|^2$ and $|z|^2$, need to be matched.
- Signals need to be time aligned.
- Distortion from main amplifier not considered in analysis.
- Masking and calibration can reduce these problem.

Conclusion

- Second loop control of a feedforward PA
 - In-band pilot obtained by modulating the alignment control of the first loop.
- Bi-orthogonal demodulation pilot
 - Avoids steady state alignment offsets.
- Has potential for DL-LTE Advanced applications.

Thank You.

• Questions?

