Extensions to the Positive Feedback Pilot System for Second Loop Control of a Feedforward Compensated Amplifier

R. Neil Braithwaite Powerwave Technologies

Goal

- Linear amplification of an RF signal.
 - Large instantaneous bandwidths.
- Compensate for amplifier degradations.
 - Distortion, noise.
 - Linear impairments.
- Adaptive.
 - Optimize distortion cancellation.

Outline

Background

- Feedforward structure.
- Loop alignment.
- Pilot-based alignment of 2nd loop.
 - Standard pilot systems.
 - Original positive feedback pilot system.
 - Extensions.

• Summary

Feedforward Structure

• Two amplifiers

- Main amplifier (MA) determines the power capability.
- Error amplifier (EA) determines linearity of system.

• Optimization

– Adjust gains g_1 and g_2 to minimize the distortion power in the output signal z(t).

Feedforward Linearization

- First cancellation loop (Path 1A-1B).
 - Estimates of distortion d(t) generated within the MA path.
 - Select gain g_1 to cancel linear signal within $\varepsilon(t)$.
- Second cancellation loop (Path 2A-2B).
 - Select gain g_2 to cancel distortion within z(t).

Pilot Assisted Second Loop Control

- Inject pilot into MA path.
- Adjust g₂ to minimize residual pilot in z(t).
 - Optimum value is denoted g_{2,opt}.
- 2nd loop cancellation transfer function

•
$$G_2 = 1 - g_{EA} g_2 = (g_{2,opt} - g_2) / g_{2,opt}$$

• Optimal value is $G_2 = 0$.

Standard Pilot System

- Pilot generation (bottom section)
 - -LO selects pilot frequency to be outside of carrier BW.
- Pilot detection (top section)
 - Band pass filter at IF blocks carrier.
 - -Measures residual pilot power, V_{det}.

Pilot

- Pilot is located outside of input signal spectrum.
 - Detected reliably by band pass filtering z(t).
 - Injected pilot is independent of x(t).
 - Able to adapt 2nd loop when there is no input signal x(t).
- Drawbacks
 - Residual pilot is considered a spurious emission.
 - 2nd loop adaptation based on power minimization is slower than a gradient-based search.

Positive Feedback Pilot System

- Self oscillating pilot signal.
 - Generated from noise within a nonlinear feedback loop.
 - Oscillation occurs if loop gain is large enough that the soft limiter is clipping the fed back signal.

Positive Feedback Pilot System

Key equations

- $V_{det} = k_a \log(|G_2|) + k_b$.
- $\omega_{\text{pilot}} = \omega_{\text{o}} + \arg(\text{G}_2) / \text{T}_{\text{loop}}.$
- T_{loop} is the loop delay.

Advantages

- Independent measurements of $|G_2|$ and $arg(G_2)$.
- Synchronous detection improves convergence.
- Pilot shuts off automatically when $|G_2|$ is small.
 - Residual pilot no longer discernible (24 dB reduction).
 - See Braithwaite, TCAS-I, vol. 55, no. 10, Nov. 2008.

Magnitude and Frequency vs. Alignment g₂

- Magnitude contours: $V_{det}(g_2) = k_a \log\{|G_2|\} + k_b$
 - Convex, one minimum region.
- Frequency contours: $\omega_{pilot}(g_2) = \omega_0 + \arg\{G_2\} / T$
 - Freq is proportional to $arg\{G_2\}$, except at discontinuity.

Pilot Spectrum

- Pilot on state (oscillating)
 - Single frequency tone, high amplitude.
- Pilot off state
 - Wide bandwidth, low amplitude.

Rate of Convergence

- Synchronous detection.
 - Gradient-based search, faster convergence.
- Magnitude only.
 - Coordinate descent, slower convergence.

Improved Positive Feedback Pilot System

New features

- -Automatic level controller (ALC).
- Digital phase lock loop (PLL).
- Power spectrum measurement of pilot.
- Adjustable pilot shut-off level.

ALC

- Replaces limiter and detector.
 - Variable attenuation based on a feedback loop.
 - Keeps pilot amplitude constant while VVA is in range.
 - -VVA control measures residual pilot power (ATTN).
 - Pilot shut off begins when VVA reaches lower limit.
- Less harmonic content in pilot signal.

Digital PPL

• Frequency lock loop.

- Variable phase shifter controls pilot frequency.
- Loop keeps pilot frequency constant.
 - Compensates for frequency shifts associated with changes in g₂.
- Phase control ϕ_{loop} measures arg{G₂} directly.
- Phase shifter may be placed at LO port.

Power Spectrum of Pilot

- Part of the digital phase lock loop.
- Used to extend the residual pilot measurement.
 - Needed when the ALC-VVA reaches lower limit.
 - Allows control of g_2 within the pilot shut off region.
- Used to reduce the detection bandwidth.
 - Useful when the ambient noise level of the input signal to the feedforward PA is high.
 - Example: optically fed radio head amplifiers.

Adjustable Pilot Shut-off

- Adjustable gain stage placed before ALC.
 - Allows selection of the second loop cancellation level, $|G_2|$, when pilot shut off begins.
 - Increasing pilot shut off gain reduces $|G_2|$ shut off level.

Conclusion

• Positive feedback pilot system.

- Direct measurements of a feedforward PA's second loop cancellation transfer function.
- Both amplitude and phase.
- Improves second loop convergence.

• Extensions

- Constant pilot frequency using PLL.
- Variable detection bandwidth using power spectrum measurements.
- Adjustable pilot shut-off threshold.

Thank You

• Questions?

