Extensions to the Positive Feedback Pilot System for Second Loop Control of a Feedforward Compensated Amplifier

R. Neil Braithwaite
Powerwave Technologies
Goal

• **Linear amplification of an RF signal.**
 – Large instantaneous bandwidths.

• **Compensate for amplifier degradations.**
 – Distortion, noise.
 – Linear impairments.

• **Adaptive.**
 – Optimize distortion cancellation.
Outline

• **Background**
 – Feedforward structure.
 – Loop alignment.

• **Pilot-based alignment of 2nd loop.**
 – Standard pilot systems.
 – Original positive feedback pilot system.
 – Extensions.

• **Summary**
Feedforward Structure

- **Two amplifiers**
 - Main amplifier (MA) determines the power capability.
 - Error amplifier (EA) determines linearity of system.

- **Optimization**
 - Adjust gains g_1 and g_2 to minimize the distortion power in the output signal $z(t)$.
Feedforward Linearization

- **First cancellation loop (Path 1A-1B).**
 - Estimates of distortion $d(t)$ generated within the MA path.
 - Select gain g_1 to cancel linear signal within $\varepsilon(t)$.

- **Second cancellation loop (Path 2A-2B).**
 - Select gain g_2 to cancel distortion within $z(t)$.
Pilot Assisted Second Loop Control

- Inject pilot into MA path.
- Adjust g_2 to minimize residual pilot in $z(t)$.
 - Optimum value is denoted $g_{2,\text{opt}}$.
- 2nd loop cancellation transfer function
 - $G_2 = 1 - g_{E_A}$
 - $g_2 = (g_{2,\text{opt}} - g_2) / g_{2,\text{opt}}$
 - Optimal value is $G_2 = 0$.
Standard Pilot System

- **Pilot generation (bottom section)**
 - LO selects pilot frequency to be outside of carrier BW.
- **Pilot detection (top section)**
 - Band pass filter at IF blocks carrier.
 - Measures residual pilot power, V_{det}.
Pilot

- **Pilot is located outside of input signal spectrum.**
 - Detected reliably by band pass filtering $z(t)$.
 - Injected pilot is independent of $x(t)$.
 - Able to adapt 2nd loop when there is no input signal $x(t)$.

- **Drawbacks**
 - Residual pilot is considered a spurious emission.
 - 2nd loop adaptation based on power minimization is slower than a gradient-based search.
Positive Feedback Pilot System

• **Self oscillating pilot signal.**

 – Generated from noise within a nonlinear feedback loop.

 – Oscillation occurs if loop gain is large enough that the soft limiter is clipping the fed back signal.
Positive Feedback Pilot System

• Key equations
 - \(V_{\text{det}} = k_a \log(|G_2|) + k_b \).
 - \(\omega_{\text{pilot}} = \omega_o + \arg(G_2) / T_{\text{loop}} \).
 - \(T_{\text{loop}} \) is the loop delay.

• Advantages
 - Independent measurements of \(|G_2| \) and \(\arg(G_2) \).
 - Synchronous detection improves convergence.
 - Pilot shuts off automatically when \(|G_2| \) is small.
 - Residual pilot no longer discernible (24 dB reduction).
Magnitude and Frequency vs. Alignment g_2

- **Magnitude contours:** $V_{\text{det}}(g_2) = k_a \log|G_2| + k_b$
 - Convex, one minimum region.

- **Frequency contours:** $\omega_{\text{pilot}}(g_2) = \omega_0 + \arg\{G_2\} / T$
 - Freq is proportional to $\arg\{G_2\}$, except at discontinuity.
Pilot Spectrum

- **Pilot on state (oscillating)**
 - Single frequency tone, high amplitude.

- **Pilot off state**
 - Wide bandwidth, low amplitude.
Rate of Convergence

- **Synchronous detection.**
 - Gradient-based search, faster convergence.
- **Magnitude only.**
 - Coordinate descent, slower convergence.
Improved Positive Feedback Pilot System

• New features
 – Automatic level controller (ALC).
 – Digital phase lock loop (PLL).
 – Power spectrum measurement of pilot.
 – Adjustable pilot shut-off level.
• Replaces limiter and detector.
 – Variable attenuation based on a feedback loop.
 • Keeps pilot amplitude constant while VVA is in range.
 – VVA control measures residual pilot power (ATTN).
 – Pilot shut off begins when VVA reaches lower limit.
• Less harmonic content in pilot signal.
Digital PPL

- Frequency lock loop.
 - Variable phase shifter controls pilot frequency.
 - Loop keeps pilot frequency constant.
 - Compensates for frequency shifts associated with changes in g_2.
 - Phase control ϕ_{loop} measures $\text{arg}\{G_2\}$ directly.
- Phase shifter may be placed at LO port.
Power Spectrum of Pilot

- Part of the digital phase lock loop.
- Used to extend the residual pilot measurement.
 - Needed when the ALC-VVA reaches lower limit.
 - Allows control of g_2 within the pilot shut off region.
- Used to reduce the detection bandwidth.
 - Useful when the ambient noise level of the input signal to the feedforward PA is high.
 - Example: optically fed radio head amplifiers.
Adjustable Pilot Shut-off

- Adjustable gain stage placed before ALC.
 - Allows selection of the second loop cancellation level, $|G_2|$, when pilot shut off begins.
 - Increasing pilot shut off gain reduces $|G_2|$ shut off level.
Conclusion

• Positive feedback pilot system.
 – Direct measurements of a feedforward PA’s second loop cancellation transfer function.
 – Both amplitude and phase.
 – Improves second loop convergence.

• Extensions
 – Constant pilot frequency using PLL.
 – Variable detection bandwidth using power spectrum measurements.
 – Adjustable pilot shut-off threshold.
Thank You

• Questions?