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Efficiency Enhancement in Power Back-Off

= TX power control is needed to save battery life and mitigate multi-user
Interference

= “Simple” PAs exhibit best efficiency at maximum output power only
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Maintaining high efficiency in power back off:

1. Reduce the supply voltage
— Envelope Tracking, EER ...

2. Adapt PA loadline
— Active load adaptation (e.g., Doherty)
— Passive load adaptation




Variable Matching Networks: Recent Results
= Neo et al., JSSC 2009: Silicon-on-Glass Varactor Diodes
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= Qiaoetal., TMTT 2005: pHEMT PA + Output Power (dBm)
MEMS varactor tuner

Obijective:

Load-Line Adaptation in a
Fully-Integrated Silicon PA
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Device Characterization

= SOI CMOS technology

= Load-pull experimental results
= Single-transistor latch-up

Integrated PA

= Circuit design

= Measured efficiency improvement
= Load optimization for linearity



‘y, Technology Choice: SOl CMOS

Front-end:

0.13-pm SOI CMOS process
High-resistivity substrate (>1kQ-cm),
400-nm BOX, 150-nm Si layer

2nm / 5nm gate oxide thickness for
1.2V [ 2.5V applications

Floating-body (FB) and body-contact
(BC) NMOS and PMOS

Back-end:

6 damascene Cu metal levels (thick-
copper for last) + ALUCAP

MIM capacitors, HIPO resistors,
High-Q spiral inductors
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Enabling technology for RF SoCs:

= Higher speed / lower consumption
= High-Q Inductors and T. Lines
= Better cross-talk isolation

= Floating Substrate: FET Stacking
— High-voltage PAs
— High-voltage RF switches
— High-voltage Switched Capacitors




On-Wafer Multi-Harmonic Load-Pull
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‘Gate ' '- _____ il m; rain: = Optimized for modular layout

.2 ___. = Higher metal layers and multiple vias to
reduce extrinsic parasitic resistance



Load-pull contours at V5 1.1V

Measurement Simulation
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class-E-like operation (2nd, 3rd harmonics open)



Load-pull contours at V5 1.4V

Measurement Simulation
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class-E-like operation (2nd, 3rd harmonics open)



Load-pull contours at V1.7V

Measurement Simulation
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3d harm. load

fo = 1.9 GHz, P, ,,) = 2 dBm, single tone CW input,

in(av

class-E-like operation (2nd, 3rd harmonics open)



Load-pull contours at V2.0 V

Measurement Simulation

Pout [dBm]
PAE [%]
2nd harm. load

3d harm. load

= Discrepancy b/w measurement and simulation

= Worse in the region of high V¢



Load-pull contours at V2.3V

Measurement Simulation

Pout [dBm]
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¢ 27 harm. load
O 39harm. load

= Device operation at 2.3 V is compromised



Output power [dBm]

PAE [%]

Performance vs. V, (50 Q Load)
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Drain current runaway with large-
signal input

Self-sustaining (high Iy even
after RFin is switched off)

Non destructive (safe gate oxide)

Clean output spectrum (no RF
instability / oscillation)



Single-Transistor Latch-up in SOI
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Outline

Device Characterization

= SOI CMOS technology

» |Load-pull experimental results
» Single-transistor latch-up

Integrated PA

= Circuit design

= Measured efficiency improvement
= Load optimization for linearity



Simplified PA Schematic
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Fully integrated tunable output matching

Differential topology helps impedance transformation ratio
(4x load impedance compared to single-ended)

Two banks of variable capacitors



Tunable Output Matching Capacitors
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= Bank of binary weighted switched caps (0.96 pF — 4.32 pF, 4 bits)
= Up to 10-V off state swing

- Transistor stacking for improved switch robustness (3 FB NMOS)
- 2 MIM capacitors in series



Tunable Capacitors: Design Criterion

= Product ris invariant with switch
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Output Transformer

= Provides biasing, differential-to-
single-ended conversion, and
-S4  Impedance matching

= Topmost metal layers paralleled

CT  to minimize series resistance

§= = No ground shield

= Large single-turn (no via) primary
colil to carry dc current

Parameter Primary coil Secondary coil
Shape Octagonal (interleaved)

Number of turns 1 (center tap) 2

Trace width 52 um 26 um

Trace metal MTL5 + MTL6 + ALUCAP
External diameter 520 um

Inductance 690 pH 2.2 nH

Quality factor 12.2 12.6

Coupling factor 0.65




Circuit Layout and Assembly

Die area: 1.1 x 1.2 mm

Chip-on-board assembly (wire
bond)

FR4 test board

No matching refinement at the
output

Lumped matching and external
SMA balun at the input
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Drain efficiency [%]

Experimental Characterization
Single-tone continuous-wave (CW) test at 2.45 GHz and 2-V supply voltage
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Results

Peak performance: 23.9 dBm / 55%
drain efficiency

65% maximum efficiency

Up to 34% relative efficiency
improvement in back off



Load Reconfiguration for Optimal Linearity
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= Load can be adapted to obtain optimized linearity

= A severe —40-dBc IM3 spec is met up to 16 dBm with 19% efficiency
(15MHz tone spacing, WLAN-like testing)



Summary

Device characterization

= High PAE (72% at 1.9 GHz) and safe operation at nominal 2-V supply
= Single-transistor latch-up identified as main limitation for SOl PAs
= Device layout guidelines have been provided

Integrated PA Design
= First CMOS PA with fully integrated reconfigurable matching network
= Nominal performance: 24-dBm P with 55% efficiency at 2.4 GHz

= SOl process enables load adaptation (up to 34% relative efficiency
enhancement)

= Load adaptation also exploited to improve linearity
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