

A Testbench for Analysis of Bias Network Effects in an RF Power Amplifier with DPD

Marius Ubostad and Morten Olavsbråten

Dept. of Electronics and Telecommunications Norwegian University of Science and Technology

2009 Power Amplifier Symposium, San Diego, CA.

Outline

Introduction

- Motivation
- Bias Network design
- DPD
- Measurement Setup
- Experimental Results
- Conclusions

- The power amplifier is a critical component in a wireless system
- Important power amplifier parameters:
 - Frequency band
 - Power
 - Bandwidth
 - Linearity
 - Efficiency
 - Size, cost ...
- Linearity vs. efficiency tradeoff
- Linearization, efficiency enhancement

Size,cost

2009 Power Amplifier Symposium, San Diego, CA.

Slide 3

Spectral mask

- The scope of this work is to build a testbench where we can do most measurements necessary for a PA design
- In addition we want to measure the effect of different bias network in the PA
- A power amplifier based on a pHEMT transistor is deigned for the experiments
- A standard bias network is first used for the experiments
- Two extreme variants where large inductors are used are tested to demonstrate the effect on the linearity
- The measurements are done with and without DPD

Innovation and Creativity

Slide 4

Bias network design

- Isolate RF from DC
- Important for stability at low frequencies
- Defines the impedance at baseband
- Often based on empirical design methods
- More critical as the bandwith of the signal increases
- Traditionally simplified to a large inductor in text books, but recently this topic is being covered (Cripps)

Different bias configurations

- Resistor improve stability, but not desirable at drain
- Large impedance at baseband can result in drain modulation/memory effects
- Internal parasitics in SMD components

2009 Power Amplifier Symposium, San Diego, CA.

Simple memoryless DPD

- Complex baseband samples at the input and output are recorded
- A blockbased least square algorithm is applied to identify the DPD coefficients
- The DPD algoritm and communication with the instruments is implemented in Matlab
- The algoritm sensitive to memory that that has its origin in the bias network

The baseband DPD model based on indirect learning architecture

2009 Power Amplifier Symposium, San Diego, CA.

Measurement Setup

2009 Power Amplifier Symposium, San Diego, CA.

- Combinations of quarterwavelength transmission lines isolates bias circuitry from RF at f0 and 3f0, 2f0 shorted
- A 1 watt pHEMT transistor used in the experiments
- The transistor is biased in deep class AB
- 2.4 Ghz

DUT

2009 Power Amplifier Symposium, San Diego, CA.

1-tone measurements

- Source- and load impedance optimized for best efficiency
- 1-tone measurements are independent on the bias circuit

1 dB Compression	
Pout	29.2 dBm
PAE	67 %

2009 Power Amplifier Symposium, San Diego, CA.

- 2-tone measurements with reference bias
 - Close to short circuit at baseband at drain
 - Small differences between upper and lower IMD product, except one point

Bias circuit impedance

2009 Power Amplifier Symposium, San Diego, CA.

- 2 tone measurements with large inductor at drain
 - Increasing differens in lower and upper IMD product

Bias circuit impedance drain

2009 Power Amplifier Symposium, San Diego, CA.

2 tone measurements with TOIMD lower tone large inductor at gate 10 large inductor at gate -15 -20 -25 .20 30 -30 40 -35 -50 -40 -60 30 -45 25 10 -50 TOIMD tone difference large inductor at gate 10 ~ 10² 10 15 Pout, dBm Delta frequency, Hz 10 TOIMD upper tone large inductor at gate 5 -15 -20 -10 Λ -25 -20 -30 -5 -30 -35 -40 -5 freq (30.00kHz to 30.00MHz) -10 -40 -50 45 -15 -60 30 Bias circuit impedance gate -50 -10 -70 25 30 -55 10 25 20 -60 10⁴ 10⁶ 20 104 15^{10²} 65 Pout, dBm 15 10² Delta frequency, Hz Pout, dBm Delta frequency, Hz

2009 Power Amplifier Symposium, San Diego, CA.

Innovation and Creativity

- ACPR measurements with reference bias network
 - 16 QAM, symbolrate 3.84 MHz
 - About 10 dB improvement with DPD

Innovation and Creativity

Slide 14

EEE

Experimental Results

- Linearity measurements with large inductor at drain
 - ACPR degraded
 - DPD not able to compensate due to memory/drain modulation

Innovation and Creativity

- Linearity measurements with large inductor at gate
 - ACPR unchanged at low power levels
 - At high output power ACPR is drastically degraded

Innovation and Creativity

- A large inductance at drain degrades the linearity, DPD cannot compensate for this
- A large inductance at gate doesn't affect the linearity at low power but has a significant impact at high power, gate modulation?

Innovation and Creativity

- A testbench for PA design is presented that includes automized measurements
- In addition to load-pull the effect of the bias network can be easily measured
- To demonstrate the importance of the bias circuits two extreme variants are tested and their effect of the linearity are measured
- Measurements show that large inductance at drain degrades the linearity as expected and that a simple memoryless DPD cannot compensate for this
- A large inductance at gate only affects the linearity at high power levels, gate modulation

We would like to thank:

The Research Council of Norway, the research program WIWIC
II

Thank you for your attention!

