A Testbench for Analysis of Bias Network Effects in an RF Power Amplifier with DPD

Marius Ubostad and Morten Olavsbråten
Dept. of Electronics and Telecommunications
Norwegian University of Science and Technology
Outline

- Introduction
 - Motivation
 - Bias Network design
 - DPD
- Measurement Setup
- Experimental Results
- Conclusions
Introduction

The power amplifier is a critical component in a wireless system.

Important power amplifier parameters:
- Frequency band
- Power
- Bandwidth
- Linearity
- Efficiency
- Size, cost ...

Linearity vs. efficiency tradeoff
Linearization, efficiency enhancement
Introduction

- The scope of this work is to build a testbench where we can do most measurements necessary for a PA design.
- In addition, we want to measure the effect of different bias networks in the PA.
- A power amplifier based on a pHEMT transistor is designed for the experiments.
- A standard bias network is first used for the experiments.
- Two extreme variants where large inductors are used are tested to demonstrate the effect on the linearity.
- The measurements are done with and without DPD.
Introduction

- Bias network design
 - Isolate RF from DC
 - Important for stability at low frequencies
 - Defines the impedance at baseband
 - Often based on empirical design methods
 - More critical as the bandwidth of the signal increases
 - Traditionally simplified to a large inductor in textbooks, but recently this topic is being covered (Cripps)
Different bias configurations

- Resistor improve stability, but not desirable at drain
- Large impedance at baseband can result in drain modulation/memory effects
- Internal parasitics in SMD components
Simple memoryless DPD
- Complex baseband samples at the input and output are recorded
- A block-based least square algorithm is applied to identify the DPD coefficients
- The DPD algorithm and communication with the instruments is implemented in Matlab
- The algorithm sensitive to memory that has its origin in the bias network

The baseband DPD model based on indirect learning architecture
Measurement Setup

- **Measurement Setup Diagram**
 - **Signal Generator**
 - **Driver Amplifier**
 - **Circulator**
 - **Source tuner**
 - **Load tuner**
 - **Coupler**
 - **Attenuator**
 - **Power sensor A**
 - **Power sensor B**
 - **Power meter**
 - **GPIB bus**
 - **Multimeter**
 - **Signal Analyzer**
 - **PC**

Values

- Anritsu A: -10.05 dBm
- B: 5.01 dBm
- DUT dBm
- Volts Amps: 10.05 0.0505

Frequency Range

- 2.4 GHz 2 dBm

Manufacturer

- **ROHDE & SCHWARZ**
- **FLUKE**
- **PC**
Combinations of quarter-wavelength transmission lines isolates bias circuitry from RF at f0 and 3f0, 2f0 shorted

A 1 watt pHEMT transistor used in the experiments

The transistor is biased in deep class AB

2.4 Ghz
Experimental Results

- 1-tone measurements
 - Source- and load impedance optimized for best efficiency
 - 1-tone measurements are independent on the bias circuit

<table>
<thead>
<tr>
<th>1 dB Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pout</td>
</tr>
<tr>
<td>PAE</td>
</tr>
</tbody>
</table>

1-tone measurements

1 dB Compression

<table>
<thead>
<tr>
<th>Pout</th>
<th>29.2 dBm</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAE</td>
<td>67 %</td>
</tr>
</tbody>
</table>

PAE vs. Gain vs. Output Power, dBm / Gain, dB
Experimental Results

- 2-tone measurements with reference bias
 - Close to short circuit at baseband at drain
 - Small differences between upper and lower IMD product, except one point

Bias circuit impedance
Experimental Results

- 2 tone measurements with large inductor at drain
 - Increasing differences in lower and upper IMD product

Bias circuit impedance drain
Experimental Results

- 2 tone measurements with large inductor at gate
Experimental Results

- ACPR measurements with reference bias network
 - 16 QAM, symbol rate 3.84 MHz
 - About 10 dB improvement with DPD

![ACPR measurements reference](image1)

![Spectrum with DPD reference](image2)

![Spectrum without DPD reference](image3)
Experimental Results

- Linearity measurements with large inductor at drain
 - ACPR degraded
 - DPD not able to compensate due to memory/drain modulation
Experimental Results

- Linearity measurements with large inductor at gate
 - ACPR unchanged at low power levels
 - At high output power ACPR is drastically degraded
Experimental Results

- A large inductance at drain degrades the linearity, DPD cannot compensate for this.
- A large inductance at gate doesn’t affect the linearity at low power but has a significant impact at high power, gate modulation?
Conclusions

- A testbench for PA design is presented that includes automated measurements.
- In addition to load-pull the effect of the bias network can be easily measured.
- To demonstrate the importance of the bias circuits two extreme variants are tested and their effect on the linearity are measured.
- Measurements show that large inductance at drain degrades the linearity as expected and that a simple memoryless DPD cannot compensate for this.
- A large inductance at gate only affects the linearity at high power levels, gate modulation.
Acknowledgement

We would like to thank:

- The Research Council of Norway, the research program WIWIC II

Thank you for your attention!