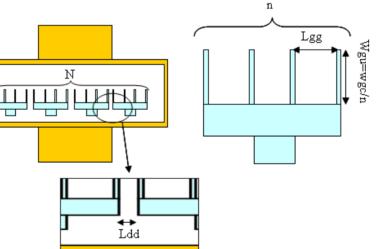
Layout-Optimization of Power-Devices

Frederik Vanaverbeke, J. Das, H. Oprins, J. Derluyn, M. Germain, W. De Raedt

Outline

- 2. Unit gatewidth
- 3. Thermal
- 4. Number of unit cells
- 5. EM-simulations


Outline

- 2. Unit gatewidth
- 3. Thermal
- 4. Number of unit cells
- **5.** EM-simulations

Problem Description + Nomenclature

- A device = Nunit cells, each having ngate-fingers of length Nggg
- Total gatewidth is $W = N \times n \times W_{gu}$. And $W \sim Pout$
- \log = finger spacing

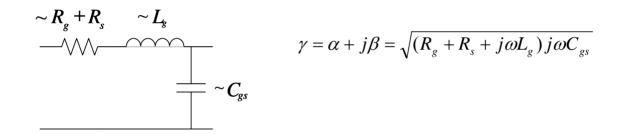
Unit-Cell

?: How to choose N,n,w_{gu},L_{gg},
 -> EM effects
 -> Thermal effects

- 2. Unit gatewidth W_{gu}
- 3. Thermal
- 4. Number of unit cells
- **5.** EM-simulations

Unit gatewidth Wgu

- IDS modulation: UNIFORM over the gate finger
- => Phase rotation & hence length must be limited.
- Finger ~ transmission line


- voltage:
$$v(x,s) = \frac{Z_0(s)E_G(s)}{Z_0(s) + Z_G(s)} \cdot \frac{e^{-\gamma(s)x} + \Gamma_L(s)e^{-\gamma(s)(2L-x)}}{1 - \Gamma_L(s)\Gamma_G(s)e^{-\gamma(s)2L}}$$

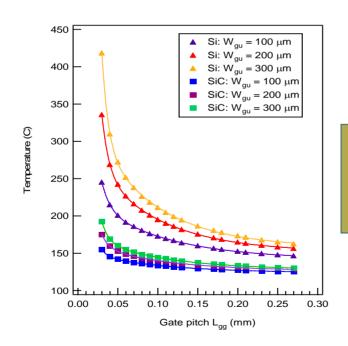
- difference in phase between v(0,s) and $v(w_{gu},s) < \pi/16$ imposes a limit to W_{gu}
- γ (complex number):
 - Through simulation
 - By modeling an infinitesimal section of the line

Unit gatewidth Wgu

- γ (complex number):
 - Through simulation in Ansoft's HFSS
 - Infinitesimal section of the line; values from transistor extractions

• Resulting maximum values for W_{qu} in μ m:

	HFSS	Extractions
2GHz	368	298
5GHz	236	188
10GHz	165	130


- 2. Unit gatewidth w_{gu}
- 3. Thermal *Lgg*
- 4. Number of unit cells
- **5.** EM-simulations

Thermal Lgg

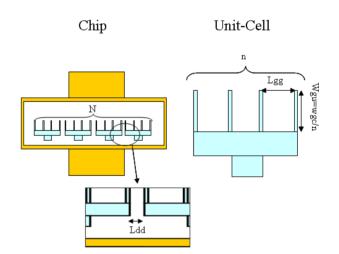
From a previous Imec study

 [J. Das et. Al, IEEE Trans. Electron Devices, 53 (11), pp. 2696-2702,2006]
 Relationship Lgg, Temperature and W_{gu} by means of 3D-simulations:

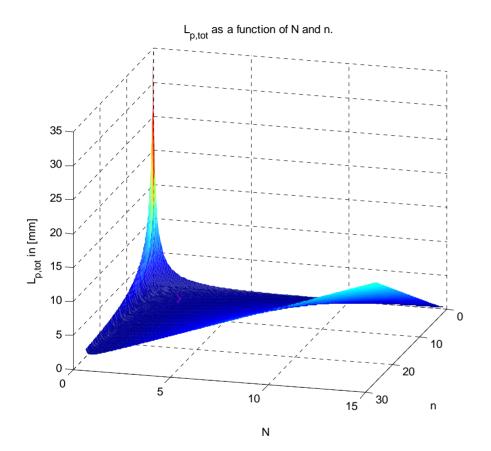
Limiting the temperature to 160 °C imposes a minimum to L_{qq} for a certain w_{qu}

The longer the finger, the further they have to be separated from each other

- 2. Unit gatewidth *w*_{gu}
- 3. Thermal *Lgg*
- 4. Number of unit cells N (and n)
- **5.** EM-simulations



Number of unit cells N (and n)


 Choose that combination of N, n and *w*_{gu} that minimizes the chip area through

$$L_{p} = \frac{N}{2}(n-1)L_{gg} + \frac{w_{g}}{N \cdot n} + \frac{N-1}{2}L_{dd}$$

- ... taking into account
 - *N* is integer and *n* is even
 - *w_{gu}* has a maximum
 a minimum number of fingers is necessary
 N x n has a minimum value
 - The cells are measurable by probes
 => N has a minimum value
- => Graphical method

Number of unit cells *N* (and *n*)

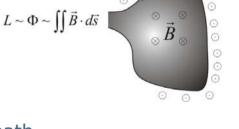
- 1. Projection of *Lp* on N,n-plane
- Plot the discrete working grid (cyan diamonds)
- 3. w_{gu} has maximum $N \times n$ is minimum~hyperbole
- 4. On-wafer characterization Minimum value for *N*
- 5. Pick that point in the working area, where L_p is minimal.

imec

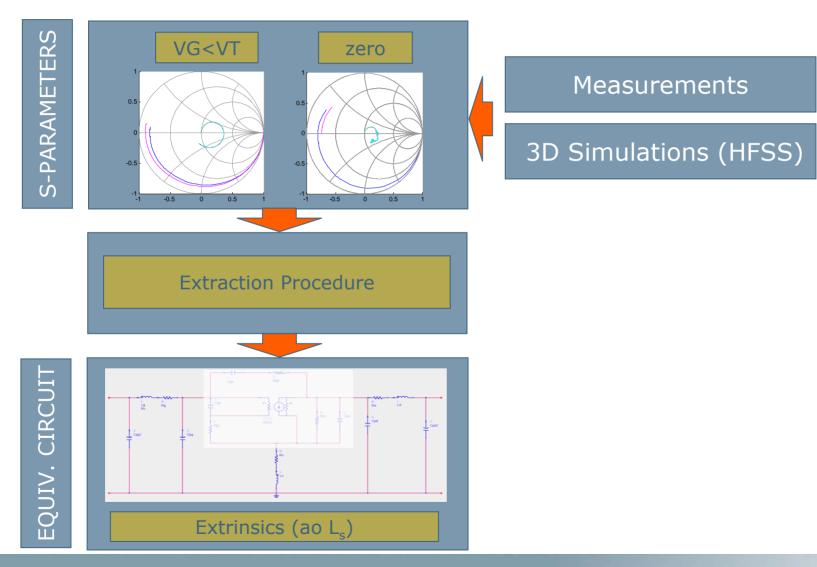
- 2. Unit gatewidth w_{gu}
- 3. Thermal *Lgg*
- **4.** Number of unit cells *N* (and *n*)
- 5. EM-simulations

• Devices in Microstrip Packages

Gate,Source,Drain on top of die (CPW)
 <->
 Ground=bottom of MS Package

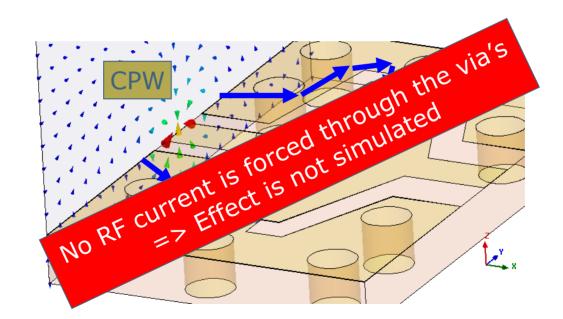

- Source-areas connected to bottom of MS Package:
 - Wirebonds
 - Via's
- Source-Inductance kills performance

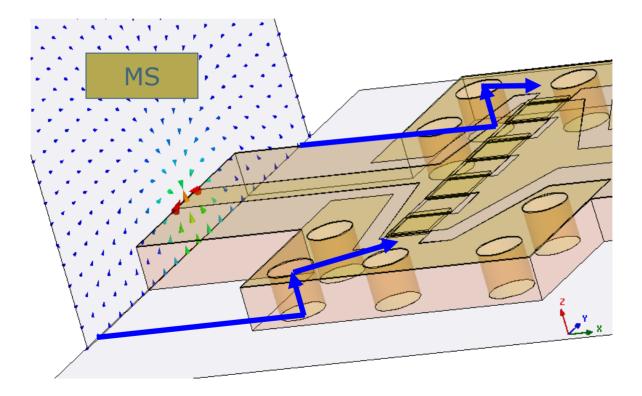
• Approximation of MAG:


$$G_{a\max} \cong \frac{\left(\frac{f_T}{f}\right)^2}{4G_{ds}\left(R_{gs} + R_s + R_s + \frac{\omega_T L_s}{2}\right) + 2\omega_T C_{gd}\left(R_{gs} + R_s + 2R_g + \omega_T L_s\right)}$$

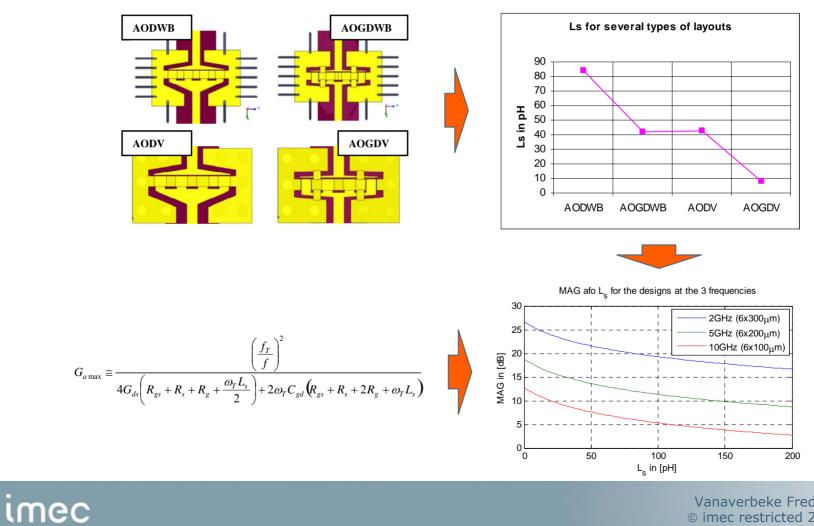
L_s should be minimized

- L_s doesn't scale and is not predictable
 - Any L is proportional with area of membrane of mag flux
 - Surface is difficult to determine because
 - *More* than 1 via's or WB's (+ coupling)
 - Common for the gate-source path and drain-source path
 - Airbridges
 - => EM-simulations




imec

 Effect of via's <=> they conduct RF Current Excitation of waveports is key



 Effect of via's <=> they conduct RF Current Excitation of waveports is key

Applied to 4 configurations

Vanaverbeke Frederik © imec restricted 2008

aspire invent achieve

