

Monolithic lumped-element unequal branch-line coupler for the use in asymmetrical Doherty amplifiers

Renato Negra¹, Fadhel Ghannouchi², Werner Bächtold³

¹Mixed Signal CMOS Circuits, UMIC Research Centre, RWTH Aachen University, Germany
²iRadio Laboratory, Schulich School of Engineering, University of Calgary, Canada
³IFH ETH Zurich, Zurich, Switzerland

Agenda

1

- Introduction
 - Doherty amplifiers
 - Active load-pull principle
- Unequal lumped element power splitter design
- Simulation and measurement results
- Summary
- Outlook

Doherty amplifiers

- Doherty amplifiers provide good efficiency for envelope modulated signals
- High efficiency in back-off
- State-of-the-art amplifier for wireless communication infrastructure
- Size constrains for monolithic integration

3 © Mixed Signal Circuits 2008	TISCC RWITHAACHEN UNIVERSITY	UMIC
-----------------------------------	---------------------------------	------

Active load-pull principle

- Peaking device has to deliver the same current as the main device
- With half of input drive level

Implementation issues Different device peripheries Size ratio is factor 2 or greater Acceptable for MMICs Different impedance level Bias control of peaking amplifier Identical devices Bias adaptation according to instantaneous input drive amplitude Use digital signal processing unit Unequal input power splitting Identical devices Similar matching networks Performance tuning with splitting ratio

- Reduced gain

5 © Mixed Signal Circuits 2008

MMIC input circuitry

DPA input circuitry tasks

- Splitting of the input signal
 - Equal splitting
 - Unequal splitting
- Phase compensation for output impedance inverter
- Impedance matching
- · Individual biasing of the two transistors

Modified branch-line hybrid coupler

Unequal power splitting

 $d_1 = 10^{P/20}$ fraction of input power available at port 2

8 © Mixed Signal Circuits 2008

Lumped element approach

- · Shrink the size of the coupler
 - Replacement of transmission lines with lumped elements
 - Minimise number of inductors
 - Provide two independent DC paths

💎 Topology used

- Minimum number of inductors
 - Small size
 - Low loss
- Independent biasing of both transistors
 - External biasing

Implementation at 5.8 GHz

IBM BiCMOS 6HP

- SiGe HBT $f_t = 47$ GHz
- 0.18 µm CMOS
- 4 µm-thick top metallization
- 10 µm dielectric stack
- 300 mm Si wafer

Characterisation issues

- Complex impedances
 - Performance comparison with simulation results in the same test set up
- Only two probes available
- Four terminal device
 - Two terminals terminated in 50 Ω on chip
 - Two chips required
 - Slight difference in performance

13 © Mixed Signal Circuits 2008

Measurement results

14 © Mixed Signal Circuits 2008

Summary

- Unequal lumped element hybrid coupler
 Arbitrary output resistance
- Combination of power divider and input matching for DPA input circuitry
 - Complex output impedances
 - Reduction of component count
 - Size reduction
 - Cost efficient implementation
- Simulation and measurement results

