

57-65GHz CMOS Power Amplifier Using Transformer-Coupling and Artificial Dielectric for Compact Design

Tim LaRocca, and Frank Chang

PA Symposium 1/20/09

Overview

- Introduction
- Design Overview
- Differential Design
 - Transmission Line Technology
 - Artificial Dielectric and Output Matching
 - Differential and Common-Mode Stability
- Transformer
 - Basics
 - Combine Matching, Bias and Stability Networks
- RF Performance
- Layout

60GHz Motivation

- Released standards for unlicensed 57-65GHz spectrum:
 - IEEE 802.15.3c, ECMA, WirelessHD, IEEE 802.11VHT
 - Very limited success: "Last-mile" efforts, LMDS, 77GHz Automotive, 71-76GHz and 81-86GHz point-to-point
 - Military (AEHF cross-link) and science applications dominate
- New commercial applications
 - Uncompressed wireless video transfer: "in-room", Wireless HDMI
 - Short distance bulk data transfer: "near-field", <1m
 - P2P (Portable-to-Portable), M2M (Machine-to-machine), Proximity Communication, Wireless hard drive backup
- Availability of standard digital CMOS process
 - High f_t (>120GHz) for 90nm gate length
 - Silicon roadmap <u>http://www.itrs.net</u> predicts 37nm f_t > 360GHz
 - Passive element Q's are reasonable
 - Do not have to rely on expensive, but high-performance GaAs or InP

Power Amplifier

- Typical millimeter-wave power amplifiers
 - Expensive, but high-performance GaAs/InP
 - Single-ended
 - Transmission line based with $\lambda/4$ structures, such as Lange or Wilkinson couplers.
 - Difficult matching impedances, extremely low.
- Millimeter-wave CMOS PAs
 - Limited publications.
 - Similar architecture to GaAs design; same disadvantages
 - Low 1.2V supply voltage (knee voltage problematic)
 - Low f_t
 - Lossy substrate, low-Q passive elements
 - Single-digit efficiencies
- Goals and Achievements
 - Double-digit efficiencies above 15% and Pout > 12dbm
 - Compact design: 80% percent reduction from standard design

Schematic

4. Low loss output match network

Differential Transmission Line UCLA

- CPW (a) and Shield Microstrip (b) are single-ended.
- GSSG (c) is pseudo-differential
 - Need 4-port network analyzer
 - Large Signal testing difficult: magic-T, transitions, amps, etc.
 - Need off or on-chip balun which is lossy
- GS (d)
 - True differential
 - Compact, 3dB more power with negligible area increase
 - Artificial dielectric strips

CMOS Artificial Dielectric

Method to artificially increase the dielectric constant, and reduce the wavelength. (1948 for antenna lenses, Dr. Kock)

- CMOS is a mutiple metal interconnect process (UMC 1P9M 90nm is a 9 metal layer process)
- □ Insert floating metal strips directly underneath **differential** transmission line (DTL) to reduce length by increasing $\varepsilon_{r,eff}$

Phase Shift

- Large phase shift versus "physical short" and "physical open" differential transmission lines.
- Result is a 6X increase in the effective dielectric constant.

L	152µm	D	3µm
W	24µm	S	0.5µm
G	20µm	Н	0.5µm

Attenuation

- Measured attenuation is similar
- □ Greater than 2X benefit in α/β when compared with $\epsilon_{r,eff}$

Artificial Dielectric Output Match

- Symmetric short-circuited stub output match.
- Artificial dielectric used for design and further compact layout
- DTL offers less loss than transformer

Artificial dielectric strips are further from

S.C. end. ~15% size reduction.

Differential and Common-Mode Stability UCLA Difference between GSSG and GS approach.

GS Transformer

GSSG Transformer (Gnd ring)

freq, GHz

Unstable

Device

- \square W_g = 2um (nf=16,32,64) for Max. Stable Gain.
- Source and drain fingers are layered from M1-M2.
- □ BSIM4 overlaid with RF layout model (R_g, C_{ext} ...)
- Be careful of gate resistance in foundry BSIM models

Transformer Element

- Transformer replaces typical matching network.
 - Inter-stage impedance matching
 - Biasing through virtual ground taps
 - Stability (K-factor)
 - Compact Layout (no lengthy chokes or matching elements)

Transformer: S-parameters

 Good agreement between simulation and test differential S-parameters. UCLA

□ $Q_{\text{primary}} \approx 10$ and k (coupling factor) ≈ 0.6

Transformer: Matching

 Simultaneous impedance matching transformation between the output of the nth-1 stage to the nth stage.

Transformer: Matching Path

L1=imag(Z11)/w L2=imag(Z22)/w M=imag(Z12)/w R1=imag(Z11) R2=imag(Z22)

Transformer: Stability

Q and inductive high-pass network provided by the transformer stabilizes large device peripheries

Transformer Requirments

- Width determined by power handling capability (RMS current), and low loss [5um and 10um]
- □ Turn ratio is determined ~ device periphery ratio (2).
- □ Load-pull and S11 determine L_1 and L_2 (self-inductances)
- Metal thickness increased by combining M8-M9.
- Minimum spacing for max. coupling
- Self-resonance frequencies >> 60GHz
- □ Q_{1,2} >10-12

Small-Signal Performance

- Gain centered at 61GHz.
- Good agreement between simulation and test.
- Gain greater than 15dB

Swept Power Performance

- Saturated Power above 12dBm
- □ Efficiency greater than 19%.

Large Signal Performance across Band UCLA

- □ 57-65GHz PAE and P_{sat} performance
- Three different chips

Comparison to Prior Art

□ Highest reported efficiency and power to-date.

Reference	This Work	[13]	[11]	[16]	[15]	
Technology	90nm	90nm CMOS	90nm	90nm CMOS	90nm CMOS	
P _{SAT} (dBm)	12.5	8.4	12.3	10.6	8.4	
PAE_{SAT} (%)	19.3	7	8.8	~1	5.8	
Gain _{SAT} (dB)	11	10.3	2.3	1	8.4	
Gain _{LIN} (dB)	15	15.2	5.5	8	17	
V _D (volt)	1.2	0.7	1.0	1.2	na	
P _{DC} (mW)	84	89	87	228.6	54	
Area (mm ²)	0.15	0.18	0.26*	0.97*	0.99*	

Layout

- Compact layout with core area 0.15mm²
- 16.7% the area of original single ended version.
 - 7-8dB higher gain, and 3.5dBm higher output power

Test Set-up

- Agilent 8731E Network Analyzer, SOLT calibration
- Agilent 83640A synthesized sweeper, 83557A 50-75GHz source module, NGC GaAs MMIC amp
- Power measurements calibrated and tested to standard

Conclusion

- 60GHz differential CMOS transformer-based power amplifier design validated.
- Highest reported efficiency and saturated power to date.
- Compact size achieved
- Acknowledgements
 - UMC Foundry
 - Northrop-Grumman Corp.

Process Variation

□ TT,FF,SS corners for BSIM4 Model

• F = Low Threshold, high leakage and driving current

20% Capacitive Variation

BSIM4 Model Parameter Corner Variation	tt	SS	ff	delta	%
Physical gate oxide thickness	1.82E-09	-1.00E-10	1.00E-10	2.00E-10	10.98
Width reduction parameter	2.02E-08	0	2.00E-09	2.00E-09	9.90
Length dependence of Ipe0	3.89E-08	-1.55E-09	1.40E-09	2.95E-09	7.58
L offset for channel width due to mask/etch effect	-1.00E-08	-1.00E-10	1.30E-09	1.40E-09	14.02
Source-drain resistance per width	50	-1.00E+01	1.70E+01	2.70E+01	54.00
Gate-drain overlap capacitance per width	5.00E-11	5.00E-12	-5.00E-12	1.00E-11	20.00
New C-V model parameter	2.20E-10	2.20E-11	-2.20E-11	4.40E-11	20.00
Fringe capacitance parameter	9.26E-11	9.26E-12	-9.26E-12	1.85E-11	20.00
Source bottom junction capacitance	1.07E-03	-1.07E-04	1.07E-04	2.14E-04	20.00
Source sidewall junction capacitance	1.26E-10	-1.26E-11	1.26E-11	2.52E-11	20.00
Source (gate) sidewall junction capacitance	2.31E-10	-2.31E-11	2.31E-11	4.62E-11	20.00
Electrical gate oxide thickness	2.25E-09	-1.00E-10	1.00E-10	2.00E-10	8.89
Threshold voltage	2.00E-01	-3.30E-02	3.30E-02	6.60E-02	33.00
Gate-source overlap capacitance per width	5.00E-11	5.00E-12	-5.00E-12	1.00E-11	20.00
Length dependence parameter for Vth offset	-4.93E-09	-1.05E-09	4.50E-10	1.50E-09	30.51
New C-V model parameter	2.20E-10	2.20E-11	-2.20E-11	4.40E-11	20.00
Equivalent length of pocket region at 0V	1.00E-10	0.00E+00	0.00E+00	0.00E+00	0.00
W offset for channel width due to mask/etch effect	0.00E+00	1.80E-09	-5.00E-09	6.80E-09	
Narrow width effect	-1.288	-2.51E+00	2.20E+00	4.71E+00	365.68
Width reduction parameter	1.78E-22	-1.20E-23	4.00E-23	5.20E-23	29.18

Atmospheric Absorption

□ O² resonance

RLC Model for Artificial DielectricUCLA

Electric Field

E-field confined between artificial dielectric strips and DTL (does not shield H-field)

Short-Circuited Stub Effect

No difference between "physical short" and "physical open" S.C. stub elements

Characteristic Impedance

Case A. "Physical Open" Differential Line: Case B. "Physical Short" Differential Line:

Transformer: Differential Mode UCLA

- Extract differential and common mode S-parameters from electromagnetic simulation
- Measurements match Differential Mode Simulation

UCLA

Effective Dielectric Constant

Short/Open Stub

$$\beta_{open} = \frac{1}{\ell} imag \left(\coth^{-1} \left(\frac{Z_{in}}{Z_o} \right) \right)$$
$$\beta_{short} = \frac{1}{\ell} imag \left(\tanh^{-1} \left(\frac{Z_{in}}{Z_o} \right) \right)$$

$$\varepsilon_{eff} = \left(\frac{\beta_{op/sh}c}{\omega}\right)^2$$

Q Transformer

Q is approximately 10

Transformer: Differential Mode UCLA

□ [1,0] mode, or ±1V and 0V consists of both even and odd mode. $+\frac{1}{2}$ $-\frac{1}{2}$:Odd Mode

+ $\frac{1}{2}$ + $\frac{1}{2}$:Even Mode

0

[1,0] [1,0] (11,11) ((11,11) (9,9) S(8,7) S(12,11) S(10,9) -0.2 -0.8 -0.4 0.2 04 06 08 0.0 [1,0] mode does not follow measurements above 20GHz freq (10.00GHz to 67.00GHz) freq (10.00GHz to 67.00GHz)

VGA Schematic

UCLA

Cascode, Transformer-Coupled

Layout is VGA + PA (0.95mm x 0.3mm)

VGA Test Results

24dB Peak Gain

8dB Variation; 7-22mA

UCLA

PA Gain

GaAs MMIC (ALH382)

UCLA

X=1550 µm Y=730 µm

PA

PAE

PA Output Power

UCLA

PA Test Set-up

