
57-65GHz CMOS Power Amplifier Using 
Transformer-Coupling and 

Artificial Dielectric for Compact Design

PA Symposium
1/20/09

Tim LaRocca, and Frank Chang



Overview
Introduction
Design Overview
Differential Design
• Transmission Line Technology
• Artificial Dielectric and Output Matching
• Differential and Common-Mode Stability

Transformer
• Basics
• Combine Matching, Bias and Stability Networks

RF Performance
Layout



60GHz Motivation
Released standards for unlicensed 57-65GHz spectrum:
• IEEE 802.15.3c, ECMA, WirelessHD, IEEE 802.11VHT
• Very limited success: “Last-mile” efforts, LMDS, 77GHz Automotive, 

71-76GHz and 81-86GHz point-to-point 
• Military (AEHF cross-link) and science applications dominate

New commercial applications
• Uncompressed wireless video transfer: “in-room”, Wireless HDMI
• Short distance bulk data transfer: “near-field”, <1m

– P2P (Portable-to-Portable), M2M (Machine-to-machine), Proximity 
Communication, Wireless hard drive backup

Availability of standard digital CMOS process 
• High ft (>120GHz) for 90nm gate length
• Silicon roadmap http://www.itrs.net predicts 37nm ft > 360GHz
• Passive element Q’s are reasonable
• Do not have to rely on expensive, but high-performance GaAs or InP

http://www.itrs.net/


Power Amplifier
Typical millimeter-wave power amplifiers
• Expensive, but high-performance GaAs/InP
• Single-ended
• Transmission line based with λ/4 structures, such as Lange or 

Wilkinson couplers.
• Difficult matching impedances, extremely low.

Millimeter-wave CMOS PAs
• Limited publications.
• Similar architecture to GaAs design; same disadvantages
• Low 1.2V supply voltage (knee voltage problematic)
• Low ft
• Lossy substrate, low-Q passive elements 
• Single-digit efficiencies

Goals and Achievements
• Double-digit efficiencies above 15% and Pout > 12dbm
• Compact design: 80% percent reduction from standard design



Schematic
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Differential Transmission Line
CPW (a) and Shield Microstrip (b) are single-ended.
GSSG (c) is pseudo-differential
• Need 4-port network analyzer
• Large Signal testing difficult: magic-T, transitions, amps, etc.
• Need off or on-chip balun which is lossy

GS (d)
• True differential
• Compact , 3dB more power with negligible area increase
• Artificial dielectric strips



CMOS Artificial Dielectric
Method to artificially increase the dielectric constant, and 
reduce the wavelength. (1948 for antenna lenses, Dr. Kock)
CMOS is a mutiple metal interconnect process (UMC 1P9M 
90nm is a 9 metal layer process)
Insert floating metal strips directly underneath differential
transmission line (DTL) to reduce length by increasing εr,eff



Phase Shift
Large phase shift versus “physical short” and “physical 
open” differential transmission lines.
Result is a 6X increase in the effective dielectric constant.

Simulation (SONNET) is solid line and measurement indicated by circles

L 152μm D 3μm

W 24μm S 0.5μm

G 20μm H 0.5μm

Phase of S21 (deg)



Attenuation
Measured attenuation is similar
Greater than 2X benefit in α/β when compared with εr,eff



Artificial Dielectric Output Match
Symmetric short-circuited stub output match.
Artificial dielectric used for design and further compact layout
DTL offers less loss than transformer

Output Match Layout

indep(PAE_contours_p) (0.000 to 15.000)

m2

indep(Pdel_contours_p) (0.000 to 55.000)

m1

Artificial dielectric strips are further from 
S.C. end. ~15% size reduction.



Differential and Common-Mode Stability
Difference between GSSG and GS approach.
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Device
Wg = 2um (nf=16,32,64) for Max. Stable Gain.
Source and drain fingers are layered from M1-M2.
BSIM4 overlaid with RF layout model (Rg, Cext …)
Be careful of gate resistance in foundry BSIM models

Drain
Gate

SourceM1
M2

M7

Layout (nf=16)

BSIM4



Transformer Element
Transformer replaces typical matching network. 
• Inter-stage impedance matching
• Biasing through virtual ground taps
• Stability (K-factor)
• Compact Layout (no lengthy chokes or matching elements)



Transformer: S-parameters
Good agreement between simulation and test 
differential S-parameters. 
Qprimary ≈ 10 and k (coupling factor) ≈ 0.6

S11 S21



Transformer: Matching
Simultaneous impedance matching transformation 
between the output of the nth-1 stage to the nth stage.

S11(loaded transformer)

Q2 Load Pull 
Circles
ΓOPT,L

S22(loaded transformer)

Q3 Avail. Gain 
Circles, 
ΓGa,MAX



Transformer: Matching Path

L1=imag(Z11)/w

R1=imag(Z11)

L2=imag(Z22)/w

R2=imag(Z22)

M=imag(Z12)/w



Transformer: Stability
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Transformer Requirments
Width determined by power handling capability (RMS 
current), and low loss [5um and 10um]
Turn ratio is determined ~ device periphery ratio (2).
Load-pull and S11 determine L1 and L2 (self-inductances)
Metal thickness increased by combining M8-M9.
Minimum spacing for max. coupling
Self-resonance frequencies >> 60GHz 
Q1,2 >10-12



Small-Signal Performance

Wideband Small-Signal Response

Gain centered at 61GHz.
Good agreement between simulation and test.
Gain greater than 15dB

Sim = circle
Test = solid



Swept Power Performance
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Large Signal Performance across Band
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Comparison to Prior Art

Reference This Work [13] [11] [16] [15]

Technology 90nm 90nm CMOS 90nm 90nm CMOS 90nm CMOS

PSAT (dBm) 12.5 8.4 12.3 10.6 8.4

PAESAT (%) 19.3 7 8.8 ~1 5.8

GainSAT (dB) 11 10.3 2.3 1 8.4

GainLIN (dB) 15 15.2 5.5 8 17

VD (volt) 1.2 0.7 1.0 1.2 na

PDC(mW) 84 89 87 228.6 54

Area (mm2) 0.15 0.18 0.26* 0.97* 0.99*

Highest reported efficiency and power to-date.



Layout
Compact layout with core area 0.15mm2

16.7% the area of original single ended version.
• 7-8dB higher gain, and 3.5dBm higher output power

0.3mm

0.5mm

Original

New Design



Test Set-up
Agilent 8731E Network Analyzer, SOLT calibration
Agilent 83640A synthesized sweeper, 83557A 50-
75GHz source module, NGC GaAs MMIC amp
Power measurements calibrated and tested to standard



Conclusion

60GHz differential CMOS transformer-based 
power amplifier design validated.
Highest reported efficiency and saturated power 
to date.
Compact size achieved
Acknowledgements
• UMC Foundry
• Northrop-Grumman Corp.



Process Variation
TT,FF,SS corners for BSIM4 Model
• F = Low Threshold, high leakage and driving current

20% Capacitive Variation



Atmospheric Absorption
O2 resonance



RLC Model for Artificial Dielectric

No effect on Inductance Factor 5-6 for capacitance



Electric Field
E-field confined between artificial dielectric 
strips and DTL (does not shield H-field)



Short-Circuited Stub Effect
No difference between “physical short” and 
“physical open” S.C. stub elements



Characteristic Impedance
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Transformer: Differential Mode
Extract differential and common mode S-parameters 
from electromagnetic simulation
Measurements match Differential Mode Simulation



Effective Dielectric Constant
Short/Open Stub

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

−

o

in
short

o

in
open

Z
Zimag

Z
Zimag

1

1

tanh1

coth1

l

l

β

β

2
/

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ω
β

ε
cshop

eff



Q Transformer
Q is approximately 10



Transformer: Differential Mode
[1,0] mode, or ±1V and 0V consists of both 
even and odd mode.

[1,0] [1,0]

[1,0] mode does not follow measurements above 20GHz



VGA Schematic
Cascode, Transformer-Coupled
Layout is VGA + PA (0.95mm x 0.3mm)



VGA Test Results
24dB Peak Gain
8dB Variation; 7-22mA



PA Gain
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GaAs MMIC (ALH382)
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PA Output Power
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PA Test Set-up
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