

Evaluation of High Efficiency PAs for use in Supply- and Load-Modulation Transmitters

[†]Christian Fager, [†]Hossein Mashad Nemati, [‡]Ulf Gustavsson, ^{†,*}Rik Jos, and [†]Herbert Zirath

GigaHertz centre

[†] Chalmers University of Technology, Sweden, [‡] Ericsson, Sweden, ^{*} NXP Semiconductors, Netherlands

christian.fager@chalmers.se

- Motivation
 - PA efficiency for modulated signals
 - Efficiency enhancement techniques
- Supply modulation transmitters
 - General polar architectures
 - Static polar characterization of LDMOS class D⁻¹ PA
 - Optimum operation for maximized efficiency
- Load modulation transmitters
 - Load impedance tuning
 - Static load modulation characterization of LDMOS class D⁻¹ PA
 - Optimum operation for maximized efficiency
- Summary and conclusions
 - Summary of efficiency predictions with modulated signal statistics
 - Comparison between supply- and load modulation results
 - Conclusions

- Motivation
 - PA efficiency for modulated signals
 - Efficiency enhancement techniques
- Dynamic supply modulation transmitter
 - General polar architectures
 - Static polar characterization of LDMOS class D⁻¹ PA
 - Optimum operation for maximized efficiency
- Dynamic load modulation transmitter
 - Load impedance tuning
 - Static load modulation characterization of LDMOS class D⁻¹ PA
 - Optimum operation for maximized efficiency
- Summary and conclusions
 - Summary of efficiency predictions with modulated signal statistics
 - Comparison between supply- and load modulation results
 - Conclusions

PA efficiency for modulated signals

• Typical high efficiency power amplifier characteristics

• Overall efficiency is maximized by minimizing the dissipated power, $P_{\rm diss}$

$$P_{diss} = \left(P_{out} - P_{in}\right)\left(1/PAE - 1\right)$$

- Average PAE is determined by the probability: $p(P_{out}) \times P_{diss}$
 - To improve efficiency, PAE must be increased at intermediate $P_{out'}$ where the signal spends most of its time

PA efficiency for modulated signals

• Typical high efficiency power amplifier characteristics

- Different efficiency enhancement techniques have been proposed
 - Dynamic supply modulation (EER / envelope tracking / hybrid EER)
 - Dynamic load modulation
 - Outphasing (Chireix / LINC)
 - Doherty
 - Pulse-width modulation (RF-PWM, bandpass $\Delta\Sigma$)

- ...

- Motivation
 - PA efficiency for modulated signals
 - Efficiency enhancement techniques

Supply modulation transmitter

- General polar architectures
- Static polar characterization of LDMOS class D⁻¹ PA
- Optimum operation for maximized efficiency
- Load modulation transmitter
 - Load impedance tuning
 - Static load modulation characterization of LDMOS class D⁻¹ PA
 - Optimum operation for maximized efficiency
- Summary and conclusions
 - Summary of efficiency predictions with modulated signal statistics
 - Comparison between supply- and load modulation results
 - Conclusions

Dynamic supply modulation principle

• PA efficiency can be improved if the supply voltage is decreased for lower power levels

Reduced dc power for low power = improved PAE!

• Different techniques can be defined depending on how the RF input power and V_{dd} are jointly controlled...

Two general categories of dynamic supply modulation

- Envelope tracking (ET)
 - PA supply voltage is always sufficiently high
 - Output power is controlled by input signal, i.e. PA in linear mode
 - Pre-distortion of the RF input only, like in ordinary PA

- Envelope elimination and restoration (EER)
 - Output power is controlled only by the PA supply voltage
 - PA operated in saturation
 - Suitable for switched mode PA operation
 - Time alignment between supply voltage and RF signal critical

General polar transmitter architecture

- Neither EER or envelope tracking can give maximum efficiency at all power levels
 - EER: Lower efficiency at low output power
 - ET: Lower efficiency at high output power
- Hybrid EER is considered
 - PAE can be maximized for all power levels by simultaneous control of both RF input power and supply voltage

Measurement example: LDMOS class D⁻¹ PA

• Static PA characterization of efficiency and P_{out} vs. P_{in} and V_{dd}

$$PAE_{PA}(P_{in}, V_{dd}) = \frac{P_{out}(P_{in}, V_{dd}) - P_{in}}{P_{dc}(P_{in}, V_{dd})}$$

- 1 GHz LDMOS class D⁻¹ SMPA
 - Devices: 2×Freescale MRF282
- Performance summary
 - $-V_{DD} = 30 \text{ V}$
 - $P_{out} = 20W$
 - $PAE_{MAX} = 70\%$
 - Gain = 15 dB
 - Bandwidth (*PAE* >50%): 90 MHz

10.5 cm

Static polar characterization results

 Efficiency and output power have mutual dependence on input power and supply voltage

- The V_{dd} and P_{in} combination that maximizes efficiency can be determined for every given P_{out}

Optimized polar performance for LDMOS class D⁻¹ PA

 P_{in} and V_{dd} are independent parameters in the figure

	<η _{PA} > (%)	
Drive condition	PAPR 10.3 dB	PAPR 6.6 dB
Traditional (V _{dd} fixed)	24%	36%
EER (P _{in} fixed)	37%	48%
Optimum P_{in}/V_{dd} drive	53%	60%

$$\left\langle \eta_{PA} \right\rangle = \frac{\int P_{out} \cdot p\left(P_{out}\right) dP_{out}}{\int P_{in} \cdot p\left(P_{out}\right) dP_{out} + \int P_{dc} \cdot p\left(P_{out}\right) dP_{out}}$$

• Simultaneous P_{in} and V_{dd} control can give a substantial efficiency improvement for the presented LDMOS class D⁻¹ PA

Simulated results with W-CDMA input signal statistics

- Motivation
 - PA efficiency for modulated signals
 - Efficiency enhancement techniques
- Supply modulation transmitter
 - General polar architectures
 - Static polar characterization of LDMOS class D⁻¹ PA
 - Optimum operation for maximized efficiency
- Load modulation transmitter
 - Load impedance tuning
 - Static load modulation characterization of LDMOS class D⁻¹ PA
 - Optimum operation for maximized efficiency
- Summary and conclusions
 - Summary of efficiency predictions with modulated signal statistics
 - Comparison between supply- and load modulation results
 - Conclusions

Dynamic load modulation principle

- Efficiency can be improved if the PA load impedance is increased at low power
 - Average dc current is decreased, while maintaining full voltage swing

- Desired load impedance variations can be generated actively
 - E.g. in Doherty amplifiers
- or using a reconfigurable load network...

Dynamic load modulation architecture

 Variation of output power by dynamically tuning the PA load network

- Varactors typically used as tuneable elements
 - Breakdown voltage > 100V
 - Low series resistance, large tuning range
- Simple and efficient electronics can be used for the control
 - No need for high power dc converters etc.
 - Potentially wideband modulation

Static load modulation measurements

• A passive load-pull tuner is used to realize a statically tunable load impedance

• Static PA characterization of efficiency and P_{out} vs. P_{in} and Γ_L

$$PAE_{PA}(P_{in},\Gamma_{L}) = \frac{P_{out}(P_{in},\Gamma_{L}) - P_{in}}{P_{dc}(P_{in},\Gamma_{L})}$$

• Similar type of characterization as the supply modulation case

Measured optimum load impedance locus

- The $\Gamma_{\rm L}$ and P_{in} combination that maximizes efficiency can be determined for every given P_{out}
 - At max output power, efficiency is maximized for 50Ω
 - A higher impedance is desired at reduced output power

CHALMERS

Optimized load modulation performance for LDMOS class D⁻¹ PA

Simulated results with W-CDMA input signal statistics

Drive condition	<η _{PA} > (%)	
	PAPR 10.3 dB	PAPR 6.6 dB
Traditional ($Z_L = 50 \Omega$)	24%	36%
Optimum P_{in}/Γ_L drive	43%	57%

- Simultaneous P_{in} and Γ_L control can also give a significant efficiency improvement even with an existing PA
 - Design of tunable matching networks for high power applications is still a matter of research

- Motivation
 - PA efficiency for modulated signals
 - Efficiency enhancement techniques
- Supply modulation transmitter
 - General polar architectures
 - Static polar characterization of LDMOS class D⁻¹ PA
 - Optimum operation for maximized efficiency
- Load modulation transmitter
 - Load impedance tuning
 - Static load modulation characterization of LDMOS class D⁻¹ PA
 - Optimum operation for maximized efficiency
- Summary and conclusions
 - Summary of efficiency predictions with modulated signal statistics
 - Comparison between supply- and load modulation results
 - Conclusions

GigaHertz Centre

Static supply and load modulation characterization for LDMOS class D⁻¹ PA

• Summary of efficiency predictions with WCDMA signal statistics

 Both supply voltage and load impedance modulation show high potential for efficiency enhancement with existing PAs

Conclusions

- Existing LDMOS class D⁻¹ PA evaluated in supply and load modulation transmitter architectures
 - Static characterization used
 - Average efficiency estimated using WCDMA signal statistics
- Both architectures show promising results with the PA tested
 - Similar performance enhancement is observed with other transistor technologies and amplifier classes
- Modulator losses are not included
 - Efficiency and bandwidth limitations in envelope modulators for supply modulation
 - Varactor and network losses/limitations in load modulation architectures
- Careful co-control of two input signals needed for maximum efficiency performance
 - New challenges in linearization and behavoural modelling

Thank you for your attention!

Acknowledgements

- GigaHertz centre
 - Swedish Governmental Agency of Innovation Systems (VINNOVA)
 - ComHeat Microwave
 - Ericsson
 - Infineon Technologies
 - NXP Semiconductors
 - Saab

