HIGH-EFFICIENCY RF AND MICROWAVE POWER AMPLIFIERS: HISTORICAL ASPECT AND MODERN TRENDS

Dr. Andrei Grebennikov
grandrei@ieee.org
HIGH-EFFICIENCY
RF AND MICROWAVE POWER AMPLIFIERS:
HISTORICAL ASPECT AND MODERN TRENDS

I. POLYHARMONIC CLASS F AND INVERSE CLASS F POWER AMPLIFIERS

II. SWITCHED-MODE CLASS E POWER AMPLIFIERS

III. SWITCHED-MODE CLASS FE POWER AMPLIFIERS
POLYHARMONIC CLASS F AND INVERSE CLASS F POWER AMPLIFIERS

1. Class F: biharmonic and polyharmonic operation modes
2. Class F with quarterwave transmission line
3. Class F: load networks with lumped elements and transmission lines
4. Class F: LDMOSFET power amplifier design examples
5. Inverse Class F: biharmonic and idealized operation modes
6. Inverse Class F: load networks with lumped elements and transmission lines
7. Inverse Class F: LDMOSFET power amplifier design examples
8. Practical high-efficiency Class F power amplifiers
1. Class F: biharmonic and polyharmonic operation modes

Fourier series for:

rectangular voltage waveform

\[\frac{v(\omega t)}{V_0} = 1 + \frac{4}{\pi} \sin \omega t + \frac{4}{3\pi} \sin 3\omega t + \frac{4}{\pi} \sum_{n=5,7,\ldots}^{N} \frac{\sin n\omega t}{n} \]

half-sinusoidal current waveform

\[\frac{i(\omega t)}{I_0} = 1 - \frac{\pi}{2} \sin \omega t - \frac{2}{3} \cos 2\omega t - 2 \sum_{n=4,6,\ldots}^{N} \frac{\cos n\omega t}{n^2 - 1} \]

1. Class F: biharmonic and polyharmonic operation modes

1. Class F: biharmonic and polyharmonic operation modes

For maximally flat waveforms

Collector Voltage

\[V_1 = \frac{9}{8} V_{cc}, \quad V_3 = \frac{1}{8} V_{cc} \]

Collector Current

\[I_1 = \frac{4}{3} I_0, \quad I_2 = \frac{1}{3} I_0 \]

Optimum Values

<table>
<thead>
<tr>
<th>Voltage harmonic components</th>
<th>1</th>
<th>1, 3</th>
<th>1, 3, 5</th>
<th>1, 3, 5, 7</th>
<th>1, 3, 5, ... , (\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/2 = 0.500</td>
<td>9/16 = 0.563</td>
<td>75/128 = 0.586</td>
<td>1225/2048 = 0.598</td>
<td>2/(\pi) = 0.637</td>
</tr>
<tr>
<td>1, 2</td>
<td>2/3 = 0.667</td>
<td>3/4 = 0.750</td>
<td>25/32 = 0.781</td>
<td>1225/1536 = 0.798</td>
<td>8/3(\pi) = 0.849</td>
</tr>
<tr>
<td>1, 2, 4</td>
<td>32/45 = 0.711</td>
<td>4/5 = 0.800</td>
<td>5/6 = 0.833</td>
<td>245/288 = 0.851</td>
<td>128/45(\pi) = 0.905</td>
</tr>
<tr>
<td>1, 2, 4, 6</td>
<td>128/175 = 0.731</td>
<td>144/175 = 0.823</td>
<td>6/7 = 0.857</td>
<td>7/8 = 0.875</td>
<td>512/175(\pi) = 0.931</td>
</tr>
<tr>
<td>1, 2, 4, ... , (\infty)</td>
<td>(\pi/4) = 0.785</td>
<td>9(\pi/32) = 0.884</td>
<td>75(\pi/256) = 0.920</td>
<td>1225(\pi/4096) = 0.940</td>
<td>(1 = 1.000)</td>
</tr>
</tbody>
</table>
1. Class F: idealized operation mode

Ideal current waveform

\[I_0 = \frac{I_{\text{max}}}{2} \] - fundamental current component

\[V_1 = \frac{4V_{cc}}{\pi} \] - fundamental voltage component

\[I_0 = \frac{I_{\text{max}}}{\pi} \] - dc current component

\[P_1 = \frac{V_{cc}I_{\text{max}}}{\pi} \] - fundamental output power

\[P_0 = V_{cc}I_0 \] - dc supply power

\[\eta = \frac{P_1}{P_0} = 100\% \] - collector/drain efficiency

Harmonic impedance conditions:

\[Z_1 = R_1 = \frac{8V_{cc}}{\pi I_{\text{max}}} = \frac{8V_{cc}}{\pi^2 I_0} \]

\[Z_n = 0 \] for even \(n \)

\[Z_n = \infty \] for odd \(n \)
2. Class F with quarterwave transmission line

Assumptions for transistor:
- ideal switch: no parasitic elements
- half period is on, half period is off: 50% duty cycle

Assumptions for load:
- sinusoidal current: ideal L_0C_0-circuit tuned to fundamental

\[
\begin{align*}
i(\omega t) &= I_R \sin \omega t & \text{- load current} \\
v(\omega t) &= 2V_{cc} - v(\omega t + \pi) & \text{- collector voltage} \\
i(\omega t) &= I_R (\sin \omega t + |\sin \omega t|) & \text{- collector current}
\end{align*}
\]

\[
i_T(\omega t) = i_T(\omega t + \pi) = I_R |\sin \omega t| & \text{- transmission-line current}
\]

\[
\begin{align*}
i_T/I_0 &
\end{align*}
\]
3. Class F: second current and third voltage harmonic peaking

Load network

Output reactive admittance:

\[
\text{Im}(Y_{\text{net}}) = \omega C_{\text{out}} - \frac{1 - \omega^2 L_2 C_2}{\omega L_1 \left(1 - \omega^2 L_2 C_2\right) + \omega L_2}
\]

Three harmonic impedance conditions:

\[
\begin{align*}
\text{Im}Y_{\text{net}}(\omega_0) &= 0 \\
\text{Im}Y_{\text{net}}(2\omega_0) &= \infty \\
\text{Im}Y_{\text{net}}(3\omega_0) &= 0
\end{align*}
\]

Circuit parameters

\[
L_1 = \frac{1}{6\omega_0^2 C_{\text{out}}}, \quad L_2 = \frac{5}{3} L_1, \quad C_2 = \frac{12}{5} C_{\text{out}}
\]

Matching circuit with high impedances at harmonics

S_{21} simulation (f_0 = 500 MHz)

\[
S_{21}, \text{ dB}
\]

\[
Q_{\text{ind}} = 20
\]
3. Class F: even current and third voltage harmonic peaking

Load network

Harmonic impedance conditions at collector (drain):

\[
\text{Im} Y_{\text{net}}(\omega_0) = 0 \\
\text{Im} Y_{\text{net}}(2n\omega_0) = \infty \\
\text{Im} Y_{\text{net}}(3\omega_0) = 0
\]

S\textsubscript{21} simulation (f\textsubscript{0} = 500 MHz)

Circuit parameters:

\[
\theta_1 = \frac{\pi}{2}, \quad \theta_3 = \frac{\pi}{6}
\]

\[
\theta_2 = \frac{1}{3} \tan^{-1} \left(\frac{1}{3Z_0 \omega C_{\text{out}}} \right)
\]

- ideal transmission lines
3. Class F: even current and third voltage harmonic peaking

Load network with impedance matching

\[V_{dd} \]
\[C_{bypass} \]
\[\lambda/4 \]
\[Z_{o3} \]
\[\lambda/12 \]
\[Z_{02}, \theta_2 \]
\[C_{out} \]
\[R_L \]
\[R_{out} \]
\[Z_{net} \]

Normalized parameters:

\[m = \frac{R_L}{R_{out}} \quad q = \frac{R_L}{Z_{o3}\sqrt{3}} \]

\[n = \omega C_{out} Z_{02} \]
4. Class F: LDMOSFET power amplifier design example

500 MHz Class F power amplifier with lumped elements

Drain voltage and current waveforms

LDMOSFET:
gate length 1.25 um
gate width 7x1.44 mm

- inductance Q-factor = \infty
- efficiency - 82%
- linear power gain > 16 dB

- inductance Q-factor = 30
- efficiency - 71%
- linear power gain > 14 dB
4. Class F: LDMOSFET power amplifier design example

500 MHz Class F power amplifier with transmission lines

Drain voltage and current waveforms

Output matching

LDMOSFET:
- gate length 1.25 um
- gate width 7x1.44 mm

- T-matching circuit for output impedance transformation
- output power - 39 dBm (8 W)
- collector efficiency - 76%
- linear power gain > 16 dB
5. Inverse Class F: biharmonic and idealized operation modes

Second-harmonic peaking

Inverse voltage and current waveforms

Fourier series for:

rectangular current waveform

\[
\frac{i(t)}{I_0} = 1 + \frac{4}{\pi} \sin \omega t + \frac{4}{3\pi} \sin 3\omega t + \frac{4}{\pi} \sum_{n=5,7,...}^{N} \frac{\sin n\omega t}{n}
\]

half-sinusoidal voltage waveform

\[
\frac{v(t)}{V_0} = 1 - \frac{\pi}{2} \sin \omega t - \frac{2}{3} \cos 2\omega t - 2 \sum_{n=4,6,...}^{N} \frac{\cos n\omega t}{n^2 - 1}
\]

A. I. Kolesnikov, “A New Method to Improve Efficiency and to Increase Power of Transmitter (in Russian),” *Master Svyazi*, pp. 27-41, June 1940
5. Inverse Class F: idealized operation mode

Concept of inverse Class F mode was reintroduced for low voltage power amplifiers designed for monolithic applications (less collector current)

Dual to conventional Class F with mutually interchanged current and voltage waveforms

- fundamental current
- fundamental voltage
- fundamental output power
- dc output power
- ideal collector/drain efficiency

Harmonic impedance conditions:

\[Z_1 = R_1 = \frac{\pi V_{\text{max}}}{8 I_0} = \frac{\pi^2 V_{\text{cc}}}{8 I_0} \]

\[Z_n = 0 \quad \text{for odd } n \]

\[Z_n = \infty \quad \text{for even } n \]
5. Inverse Class F with quarterwave transmission line

- device is driven to operate as switch
- zero impedances at odd harmonic components

overall quarterwave transmission line as infinite set of series resonant circuits
- sinusoidal current: shunt L_0C_0-circuit tuned to fundamental
- quarterwave transmission line as impedance transformer

\[R_1 = \frac{Z_0^2}{R_L} \]
6. Inverse Class F: second current and third voltage harmonic peaking

Load network

Circuit parameters:

\[\theta_1 = \frac{\pi}{3}, \quad \theta_3 = \frac{\pi}{4} \]

\[\theta_2 = \frac{1}{2} \tan^{-1} \left[\left(2Z_0 \omega C_{\text{out}} + \frac{1}{\sqrt{3}} \right)^{-1} \right] \]

Harmonic impedance conditions at collector (drain):

- \(\text{Im} Y_{\text{net}}(\omega_0) = 0 \)
- \(\text{Im} Y_{\text{net}}(2\omega_0) = 0 \)
- \(\text{Im} Y_{\text{net}}(3\omega_0) = \infty \)

S_{21} simulation \((f_0 = 500 \text{ MHz}) \)

\[S_{21}, \text{ dB} \]

f, GHz

- ideal transmission lines
7. Inverse Class F: LDMOSFET power amplifier design example

500 MHz inverse Class F power amplifier with transmission lines

- Output power - 39 dBm or 8 W
- Collector efficiency - 71%

Drain voltage and current waveforms

Load network with output matching
Optimum load network resistances at fundamental for different classes of operation

Class B:
\[R^{(B)} = \frac{V_{cc}}{I_1} = \frac{V_{cc}^2}{2P_1} \]

Class F:
\[R^{(F)} = \frac{4}{\pi} \frac{V_{cc}}{I_1} = \frac{4}{\pi} R^{(B)} \]

Inverse Class F:
\[R^{(invF)} = \frac{\pi}{2} \frac{V_{cc}}{I_1} = \frac{\pi^2}{8} R^{(F)} = \frac{\pi}{2} R^{(B)} \]

Load resistance in inverse Class F is the highest (1.6 times larger than in Class B)

Less impedance transformation ratio and easier matching procedure
8. Practical high-efficiency RF and microwave Class F power amplifiers

Class F GaN HEMT power amplifier with input harmonic control

Class AB biasing with small quiescent current

RC-circuits at the input for stable operation

Characteristic impedance Z_2 and electrical length θ is tuned to form third-harmonic tank with output device capacitance C_{ds}

Characteristic impedances Z_2 and Z_3 are chosen to provide conjugate impedance matching at fundamental

85% power-added efficiency for 16.5 W at 2 GHz

8. Practical high-efficiency RF and microwave Class F power amplifiers

Inverse Class F LDMOSFET power amplifier with quarterwave line

- **Class AB biasing with small quiescent current**
- **L-type input matching circuit with shunt variable capacitance**
- **L-type low-pass output matching circuit with shunt variable capacitance**

60% drain efficiency for 13 W at 1.78 GHz

II. SWITCHED-MODE CLASS E POWER AMPLIFIERS

1. Effect of detuned resonant circuit

2. Basic Class E with shunt capacitance

3. Generalized Class E load network with finite dc-feed inductance

4. Parallel-circuit Class E

5. Class E approximation with transmission lines

6. Class E with quarterwave transmission line

7. Broadband Class E circuit design

8. Practical RF and microwave Class E power amplifiers
1. Effect of detuned resonant circuit

- Anode efficiency of 92-93% for resonant-circuit phase angles of 30-40°: inductive impedance at fundamental and capacitive at harmonics

- Resonant frequency \(f \approx (1.4-1.5)f_0 \)

 \[f_0 \]
 fundamental frequency

- Load current lags collector voltage so that series LC\(_0\)-circuit must appear inductive at operating frequency

- Pulsed excitation with highest efficiency for conduction angles less than 180°

- Collector efficiency of 94% for 20 W 500 kHz bipolar power amplifier with 50% duty cycle

2. Basic Class E with shunt capacitance

Idealized assumptions for analysis:

- transistor has zero saturation voltage, zero on-resistance, infinite off-resistance and its switching action is instantaneous and lossless
- RF choke allows only dc current and has no resistance
- total shunt capacitance is assumed to be linear
- reactive elements in load network are lossless
- loaded quality factor Q_L of series fundamentally tuned resonant L_0C_0-circuit is infinite to provide pure sinusoidal current flowing into load
- for optimum operation 50% duty cycle is used

Idealized optimum or nominal conditions

\[
\left. \nu(\omega t) \right|_{\omega t = 2\pi} = 0
\]

\[
\left. \frac{d\nu(\omega t)}{d\omega t} \right|_{\omega t = 2\pi} = 0
\]
2. Basic Class E with shunt capacitance

Optimum circuit parameters:

\[L = 1.1525 \frac{R}{\omega} \] - series inductance

\[C = 0.1836 \frac{1}{\omega R} \] - shunt capacitance

\[R = 0.5768 \frac{V_{cc}^2}{P_{out}} \] - load resistance

Optimum phase angle at fundamental seen by switch:

\[\phi = \tan^{-1}\left(\frac{\omega L}{R}\right) - \tan^{-1}\left(\frac{\omega CR}{1 - \frac{\omega L}{R} \omega CR}\right) \approx 35.945^\circ \]
2. Basic Class E with shunt capacitance

Power loss due to non-zero saturation resistance

\[
\frac{P_{\text{sat}}}{P_{\text{dc}}} \approx \frac{8}{3} \frac{r_{\text{sat}} P_{\text{out}}^2}{V_{\text{cc}}^2} \approx 1.365 \frac{r_{\text{sat}}}{R}
\]

Power loss due to finite switching time

\[
\frac{P_{\text{sw}}}{P_{\text{dc}}} \approx \frac{\tau_{\text{sw}}^2}{12}
\]

For \(\tau_{\text{sw}} = 0.35 \) or 20°,
only 1% efficiency loss

For nonlinear capacitances represented by abrupt junction collector capacitance with \(\gamma = 0.5 \),
peak collector voltage increases by 20%

Non-ideal switch

Nonlinear capacitance
3. Generalized Class E load network with finite dc-feed inductance

- **load network consists of dc-feed inductance** L supplying also dc current, shunt capacitor C, series reactance X, bondwire inductance L_b, series fundamentally tuned L_0C_0 resonant circuit, and load R

- **shunt capacitor** C can represent intrinsic device output capacitance and external circuit capacitance

- **active device is considered as ideal switch to provide instantaneous device switching between its on-state and off-state operation conditions**

- **series reactance** X can be positive (inductance), zero and negative (capacitive)

Optimum ideal voltage conditions across switch:

\[
\begin{align*}
&v(\omega t)\big|_{\omega t=2\pi} = 0 \\
&\frac{dv(\omega t)}{d\omega t}\big|_{\omega t=2\pi} = 0
\end{align*}
\]

\[i_R(\omega t) = I_R \sin(\omega t + \varphi) \quad - \text{sinusoidal current in load}\]
3. Generalized Class E load network with finite dc-feed inductance

\[\omega^2(L + L_b)LC \frac{d^2v(\omega t)}{d(\omega t)^2} + v(\omega t) - V_{cc} - \omega LI_R \cos(\omega t + \varphi) = 0 \]

- second-order differential equation

where

\[\frac{v(\omega t)}{V_{cc}} = C_1 \cos(q \omega t) + C_2 \sin(q \omega t) + 1 - \frac{q^2 p}{1 - q^2} \cos(\omega t + \varphi) \]

and coefficients \(C_1 \) and \(C_2 \) are defined from initial conditions

\[\omega CR = 1 / q^2 \left(1 + \frac{L_b}{L} \right) \frac{\omega L}{R} \]

- shunt capacitance

\[\frac{\omega L}{R} = p \left(1 + \frac{L_b}{L} \right) / \left(\frac{\pi}{2p} + \frac{2}{\pi} \cos \varphi - \sin \varphi \right) \]

- dc-feed inductance

\[R = \frac{1}{2\pi^2} \left(\frac{\pi^2}{2p} + 2 \cos \varphi - \pi \sin \varphi \right)^2 \frac{V_{cc}^2}{P_{out}} \left(1 + \frac{L_b}{L} \right)^2 \]

- load resistance
3. Generalized Class E load network with finite dc-feed inductance

Normalized load network parameters versus $q = 1/\omega \sqrt{LC}$, $L_b = 0$

- $q \leq 0.5$: close to Class E with shunt capacitance with positive (inductive) series reactance ($X > 0$)
- $q = 1.412$: parallel-circuit Class E with zero reactance ($X = 0$) – maximum load resistance R
- $q = 1.468$: maximum shunt capacitance C (maximum operating frequency f_{max}) with negative (capacitive) reactance ($X < 0$)
To define three unknown parameters \(q \), \(\varphi \) and \(p \), two ideal optimum conditions and third equation for zero reactive part of fundamental Fourier component are applied resulting to system of three algebraic equations:

\[
\begin{align*}
\left. v(\omega t) \right|_{\omega t=2\pi} &= 0, \\
\left. \frac{dv(\omega t)}{d\omega t} \right|_{\omega \phi=2\pi} &= 0 \\
V_X &= -\frac{1}{\pi} \int_0^{2\pi} v(\omega t) \cos(\omega t + \varphi) d(\omega t) = 0
\end{align*}
\]

Optimum circuit parameters:

- parallel inductance
 \[L = 0.732 \frac{R}{\omega} \]
- parallel capacitance
 \[C = \frac{0.685}{\omega R} \]
- load resistance: highest value in Class E
 \[R = 1.365 \frac{V_{cc}^2}{P_{out}} \]

\[q = 1.412 \quad p = 1.210 \quad \varphi = 15.155^\circ \]
4. Parallel-circuit Class E

Load current

![Graph of load current](image)

Inductive impedance at fundamental

\[
\phi = \tan^{-1}\left(\frac{I_X}{I_R}\right) = \tan^{-1}\left(\frac{R}{\omega L - \omega RC}\right) = 34.244^\circ
\]

Collector voltage

![Graph of collector voltage](image)

Current through capacitance

![Diagram of circuit with current through capacitance](image)

Collector current

![Graph of collector current](image)
5. Class E with transmission lines: approximation

Two-harmonic collector voltage approximation

Optimum impedance at fundamental seen by device:

\[Z_{\text{net1}} = R \left(1 + j \tan 49.052^\circ \right) \]

- Electrical lengths of transmission lines \(l_1 \) and \(l_2 \) should be of 45° to provide open circuit seen by device at second harmonic

- Transmission-line characteristic impedances are chosen to provide optimum inductive impedance seen by device output at fundamental

5. Class E with transmission lines: approximation

Transmission-line parallel-circuit Class E GaAs HBT power amplifier for handset application

- Parameters of parallel transmission line is chosen to realize optimum inductive impedance at fundamental
- Output matching circuit consisting of series microstrip line with two shunt capacitors should provide capacitive reactances at second and third harmonics
6. Class E with quarterwave transmission line

Optimum voltage conditions across switch:

\[
\begin{align*}
\nu(\omega t)_{\omega t=2\pi} &= 0 \\
\frac{d\nu(\omega t)}{d\omega t}_{\omega t=2\pi} &= 0
\end{align*}
\]

- **sinusoidal load current**
- **50% duty cycle**

\[
\frac{d^2i_C(\omega t)}{d(\omega t)^2} + \frac{q^2}{2}i_C(\omega t) + I_R \sin(\omega t + \varphi) = 0
\]

Boundary conditions:

\[
\begin{align*}
i_C(\omega t)_{\omega t=\pi} &= 2i_R(\pi) \\
\frac{di_C(\omega t)}{d(\omega t)}_{\omega t=\pi} &= \frac{V_{cc}}{\omega L} - I_R \cos(\varphi)
\end{align*}
\]

\[
p = \frac{\omega LI_R}{V_{cc}} \\
q = \frac{1}{\omega \sqrt{LC}}
\]

- **q** = 1.649
- **p** = 1.302
- **\varphi** = -40.8°
6. Class E with quarterwave transmission line

Optimum circuit parameters:

- **Series inductance**

 \[L = 1.349 \frac{R}{\omega} \]

- **Shunt capacitance**

 \[C = \frac{0.2725}{\omega R} \]

- **Load resistance**

 \[R = 0.465 \frac{V_{cc}^2}{P_{out}} \]

Load current

Collector voltage

Current through capacitance

Collector current

Current through transmission line
6. Class E with quarterwave transmission line

Optimum impedances at fundamental and harmonics for different Class E load networks

<table>
<thead>
<tr>
<th>Class E load network</th>
<th>f_0 (fundamental)</th>
<th>$2nf_0$ (even harmonics)</th>
<th>$(2n+1)f_0$ (odd harmonics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class E with shunt capacitance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class E with parallel circuit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class E with quarterwave transmission line</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Broadband Class E circuit design

Reactance compensation load network

Input load network admittance

\[
Y_{in} = \left(j\omega C + \frac{1}{j\omega L} + \frac{1}{R + j\omega L_0} \right)
\]

\[
\omega' = \omega \left(1 - \frac{\omega_0^2}{\omega^2} \right) \quad \omega_0 = \frac{1}{\sqrt{L_0C_0}}
\]

To maximize bandwidth:

\[
\left. \frac{d}{d\omega} \text{Im} Y_{in}(\omega) \right|_{\omega=\omega_0} = 0
\]

\[
C + \frac{1}{\omega^2 L} - \frac{2L_0}{R^2} = 0
\]

Optimum parameters for series resonant circuit in Class E mode

\[
L_0 = 1.026 \frac{R}{\omega}
\]

\[
C_0 = \frac{1}{\omega^2 L_0}
\]

1 - impedance provided by series \(L_0C_0 \) resonant circuit
2 - impedance provided by parallel \(LC \) resonant circuit

- summation of reactances with opposite slopes results in constant load phase over broad frequency range

Reactance compensation principle

Device output

\(Z_{in} \)

\(L \)

\(R \)

\(C \)

\(L_0 \)

\(C_0 \)
7. Broadband Class E circuit design

Broadband Class E power amplifier with reactance compensation

\[f_0 = 120...180 \text{ MHz} \]

Drain voltage and current waveforms

LDMOSFET:
- gate length 1.25 um
- gate width 7x1.44 mm

1 - drain efficiency > 71%
2 - power gain > 9.5 dB

- input power - 1 W
- input VSWR < 1.4
- gain flatness \(\leq \pm 0.3 \)
High power LDMOSFET RF Class E power amplifier

- Class B with zero quiescent current
- Series inductance and ferrite 4:1 transformer is required to match device input impedance
- L-type output transformer to match optimum 1.5 Ω output impedance to 50 Ω load
- Quality factor of resonant circuit was chosen to be sufficiently low (∼ 5) to provide some frequency bandwidth operation and to reduce sensitivity to resonant circuit parameters
- Required value of Class E shunt capacitance is provided by device intrinsic 38 pF capacitance and external 55 pF capacitance

70% drain efficiency for 54 W at 144 MHz

8. Practical RF and microwave Class E power amplifiers

Transmission-line low-harmonic GaN HEMT Class E power amplifier

- \(\pi\)-type low-pass input matching
- Class C biasing
- Short transmission line \(TL_1\) provides required series inductive reactance
- Output open-circuit stubs are tuned to be quarterwave at 2\(^{nd}\) and 3\(^{rd}\) harmonics and capacitive at fundamental
- Characteristic impedances \(Z_2\) and \(Z_3\) are chosen to provide load matching together with series line \(TL_1\)

Input second-harmonic termination circuit is used to provide input quasi-square voltage waveform minimizing device switching time

74% power-added efficiency for 11.4 W at 2 GHz

III. SWITCHED-MODE CLASS FE POWER AMPLIFIERS

1. Basic load network and operation principle

2. Load network parameters and voltage and current waveforms

3. Design approximations with second-harmonic control (Class EF$_2$) and third-harmonic control (Class E/F$_3$)
1. Basic load network and operation principle

- Class E idealized optimum conditions applied to Class F mode affected by shunt parasitic capacitance, with added series inductance

- Symmetrizing action of shunt quarterwave line provides its voltage inverter mode resulting in similar waveform as in Class D or Class DE: it stores voltage waveform in traveling wave along its length which returns delayed by one-half fundamental period and inverted due to reflection from short-circuited end

- Transistor has zero saturation voltage, zero on-resistance, infinite off-resistance and its switching action is instantaneous and lossless
1. Basic load network and operation principle

- **switch is turned on**

- **switch is turned off**

- **dead time during charging or discharging process when current flow through shunt capacitance**

- **half-wave symmetry of transmission-line current waveform: line attempts to do same work in first and second halves of cycle**

- **zero initial phase and duty cycle D < 0.5**
2. Load network parameters and voltage and current waveforms

Optimum circuit parameters:

\[R = \frac{2 \left(1 + \cos \tau_d \right)^2}{\pi^2} \frac{V_{cc}^2}{P_{out}} \]
- load resistance

\[L = \frac{\tau_d - \sin \tau_d \cos \tau_d R}{\sin^2 \tau_d} \frac{1}{\omega} \]
- series inductance

\[C = \frac{\sin^2 \tau_d}{\pi} \frac{1}{\omega R} \]
- shunt capacitance

\(\tau_d \) - dead time

Optimum impedances at fundamental and harmonics for Class F, Class E and Class FE load networks

<table>
<thead>
<tr>
<th>High-efficiency mode</th>
<th>(f_0) (fundamental)</th>
<th>(2nf_0) (even harmonics)</th>
<th>((2n+1)f_0) (odd harmonics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class F with quarterwave line</td>
<td></td>
<td>short</td>
<td>open</td>
</tr>
<tr>
<td>Class E with shunt capacitance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class FE with quarterwave line</td>
<td></td>
<td>short</td>
<td></td>
</tr>
</tbody>
</table>
3. Design approximations with second-harmonic control (Class EF₂) and third-harmonic control (Class E/F₃)

Class $E₂F$ (or $F₂E$) power amplifier

Idealized optimum conditions:

$$v(\omega t)\big|_{\omega t=2\pi} = 0$$

$$\frac{dv(\omega t)}{d\omega t} \big|_{\omega t=2\pi} = 0$$

- Transistor has zero saturation voltage, zero on-resistance, infinite off-resistance and its switching action is instantaneous and lossless.

- Ideal Class E load network with shunt capacitance.

- Series resonant $L₂C₂$ circuit tuned to second harmonic.

3. Design approximations with second-harmonic control (Class EF₂) and third-harmonic control (Class E/F₃)

Class E/F₃ power amplifier

Idealized optimum conditions

\[
v(\omega t)\big|_{\omega t=2\pi} = 0
\]

\[
\frac{dv(\omega t)}{d\omega t} \bigg|_{\omega t=2\pi} = 0
\]

- Transistor has zero saturation voltage, zero on-resistance, infinite off-resistance and its switching action is instantaneous and lossless
- Ideal Class E load network with shunt capacitance
- Series resonant \(L_3C_3 \) circuit tuned to third harmonic

References

Andrei Grebennikov
RF and Microwave Power Amplifier Design
McGraw-Hill 2004

Andrei Grebennikov and Nathan O. Sokal
Switchmode RF Power Amplifiers
Newnes 2007