

2009 Radio and Wireless Week Power Amplifier Symposium

HIGH-EFFICIENCY RF AND MICROWAVE POWER AMPLIFIERS: HISTORICAL ASPECT AND MODERN TRENDS

Dr. Andrei Grebennikov

grandrei@ieee.org

HIGH-EFFICIENCY RF AND MICROWAVE POWER AMPLIFIERS: HISTORICAL ASPECT AND MODERN TRENDS

I. POLYHARMONIC CLASS F AND INVERSE CLASS F POWER AMPLIFIERS

II. SWITCHED-MODE CLASS E POWER AMPLIFIERS

III. SWITCHED-MODE CLASS FE POWER AMPLIFIERS

POLYHARMONIC CLASS F AND INVERSE CLASS F POWER AMPLIFIERS

- 1. Class F: biharmonic and polyharmonic operation modes
- 2. Class F with quarterwave transmission line
- 3. Class F : load networks with lumped elements and transmission lines
- 4. Class F: LDMOSFET power amplifier design examples
- 5. Inverse Class F: biharmonic and idealized operation modes
- 6. Inverse Class F: load networks with lumped elements and transmission lines
- 7. Inverse Class F: LDMOSFET power amplifier design examples
- 8. Practical high-efficiency Class F power amplifiers

1. Class F: biharmonic and polyharmonic operation modes

Fourier series for:

Third-harmonic peaking

rectangular voltage waveform

$$\frac{v(\omega t)}{V_0} = 1 + \frac{4}{\pi} \sin \omega t + \frac{4}{3\pi} \sin 3\omega t + \frac{4}{\pi} \sum_{n=5,7,\dots}^N \frac{\sin n\omega t}{n}$$

half-sinusoidal current waveform

$$\frac{i(\omega t)}{I_0} = 1 - \frac{\pi}{2}\sin\omega t - \frac{2}{3}\cos 2\omega t - 2\sum_{n=4,6,\dots}^{N} \frac{\cos n\omega t}{n^2 - 1}$$

D. C. Prince, "Vacuum Tubes as Power Oscillators, Part III," Proc. IRE, vol. 11, pp. 527-550, Sept. 1923

1. Class F: biharmonic and polyharmonic operation modes

H. J. Round, "Wireless Telegraph and Telephone Transmission," U.S. Patent 1,564,627, Dec. 1925

1. Class F: biharmonic and polyharmonic operation modes For maximally flat waveforms

collector voltage

optimum values

ies	$I_1 = \frac{4}{3}I_0$	$I_2 = \frac{1}{3}I_0$
	3	5

Current har-	Voltage harmonic components				
monic compo- nents	1	1, 3	1, 3, 5	1, 3, 5, 7	1, 3, 5,, ∞
1	1/2 =0.500	9/16 = 0.563	75/128 = 0.586	1225/2048 = 0.598	$2/\pi = 0.637$
1, 2	2/3 = 0.667	3/4 = 0.750	25/32 = 0.781	1225/1536 = 0.798	$8/3\pi = 0.849$
1, 2, 4	32/45 = 0.711	4/5 = 0.800	5/6 = 0.833	245/288 = 0.851	$128/45\pi = 0.905$
1, 2, 4, 6	128/175 = 0.731	144/175 = 0.823	6/7 = 0.857	7/8 = 0.875	$512/175\pi = 0.931$
1, 2, 4,,∞	$\pi/4 = 0.785$	$9\pi/32 = 0.884$	$75\pi/256 = 0.920$	$1225\pi/4096 = 0.940$	1 = 1.000

1. Class F: idealized operation mode

Ideal current waveform

Ideal voltage waveform

 $I_1 = \frac{I_{\text{max}}}{2}$ - fundamental current component $V_1 = \frac{4 V_{cc}}{\pi}$ - fundamental voltage component $I_0 = \frac{I_{\text{max}}}{\pi}$ - dc current component $P_1 = \frac{V_{\rm cc} I_{\rm max}}{\pi}$ - fundamental output power $P_0 = V_{cc}I_0$ - dc supply power $\eta = \frac{P_1}{P_0} = 100\%$ - collector/drain efficiency

Harmonic impedance conditions:

$$Z_1 = R_1 = \frac{8}{\pi} \frac{V_{cc}}{I_{max}} = \frac{8}{\pi^2} \frac{V_{cc}}{I_0}$$
$$Z_1 = 0 \qquad \text{for even } n$$

 $Z_n = \infty$ for odd n

2. Class F with quarterwave transmission line

$$\begin{split} i(\omega t) &= I_{\rm R} \sin \omega t \quad \text{-load current} \\ v(\omega t) &= 2V_{\rm cc} - v(\omega t + \pi) \\ &\quad \text{-collector voltage} \\ i(\omega t) &= I_{\rm R}(\sin \omega t + |\sin \omega t|) \\ &\quad \text{-collector current} \end{split}$$

Assumptions for transistor:

- ideal switch: no parasitic elements
- half period is on, half period is off: 50% duty cycle

Assumptions for load:

sinusoidal current: ideal L₀C₀-circuit tuned to fundamental

3. Class F: second current and third voltage harmonic peaking

Load network

Output reactive admittance:

$$\operatorname{Im}(Y_{\text{net}}) = \omega C_{\text{out}} - \frac{1 - \omega^2 L_2 C_2}{\omega L_1 (1 - \omega^2 L_2 C_2) + \omega L_2}$$

Three harmonic impedance conditions:

$$(1 - \omega_0^2 L_1 C_{\text{out}})(1 - \omega_0^2 L_2 C_2) - \omega_0^2 L_2 C_{\text{out}} = 0$$
$$L_1 (1 - 4\omega_0^2 L_2 C_2) + L_2 = 0$$
$$1 - 9\omega_0^2 L_1 C_{\text{out}})(1 - 9\omega_0^2 L_2 C_2) - 9\omega_0^2 L_2 C_{\text{out}} = 0$$

 S_{21} simulation ($f_0 = 500 \text{ MHz}$) S_{21} , dB

9

3. Class F: even current and third voltage harmonic peaking

10

3. Class F: even current and third voltage harmonic peaking

Load network with impedance matching

 $\sqrt{3}$

Normalized parameters:

$$m = \frac{R_{\rm L}}{R_{\rm out}} \qquad q = \frac{R_{\rm L}}{Z_{03}\sqrt{3}}$$

$$n = \omega C_{\rm out} Z_{02}$$

4. Class F: LDMOSFET power amplifier design example

500 MHz Class F power amplifier with lumped elements

Drain voltage and current waveforms

Output matching

LDMOSFET: gate length 1.25 um gate width 7x1.44 mm

- inductance Q-factor = ∞
 efficiency 82%
 linear power gain > 16 dB
- inductance Q-factor = 30 efficiency - 71% linear power gain > 14 dB

4. Class F: LDMOSFET power amplifier design example

500 MHz Class F power amplifier with transmission lines

Drain voltage and current waveforms

LDMOSFET: gate length 1.25 um gate width 7x1.44 mm

- T-matching circuit for output impedance transformation
- > output power 39 dBm (8 W)
- collector efficiency 76%
- Inear power gain > 16 dB

5. Inverse Class F: biharmonic and idealized operation modes

Second-harmonic peaking

Inverse voltage and current waveforms

 2π

 2π

m

n = 1, 3

 π

n = 1, 2

 I_0

0

 V_0

Fourier series for:

rectangular current waveform

$$\frac{i(\omega t)}{I_0} = 1 + \frac{4}{\pi}\sin\omega t + \frac{4}{3\pi}\sin 3\omega t + \frac{4}{\pi}\sum_{n=5,7,\dots}^N \frac{\sin n\omega t}{n}$$

half-sinusoidal voltage waveform

A. I. Kolesnikov, "A New Method to Improve Efficiency and to Increase Power of Transmitter (in Russian)," *Master Svyazi*, pp. 27-41, June 1940

14

5. Inverse Class F: idealized operation mode Concept of inverse Class F mode was reintroduced for low voltage power amplifiers designed for monolithic applications (less collector current)

Dual to conventional Class F with mutually interchanged current and voltage waveforms

- $I_1 = \frac{4I_0}{2}$ fundamental current $V_1 = \frac{V_{\text{max}}}{2} = \frac{\pi}{2} V_{\text{cc}}$ - fundamental voltage $P_1 = \frac{V_{\text{max}}I_0}{\pi}$ - fundamental output power $P_0 = V_{cc}I_0 = \frac{V_{max}I_0}{\pi}$ - dc output power $\eta = \frac{P_1}{P_2} = 100\%$ - ideal collector/drain efficiency Harmonic impedance conditions: $Z_{1} = R_{1} = \frac{\pi}{8} \frac{V_{\text{max}}}{I_{0}} = \frac{\pi^{2}}{8} \frac{V_{\text{cc}}}{I_{0}}$
 - $Z_n = 0$ for odd n
 - $Z_n = \infty$ for even n

5. Inverse Class F with quarterwave transmission line

device is driven to operate as switch

zero impedances at odd harmonic components

 C_0

 $R_{\rm L}$

 L_0

> quarterwave transmission line as infinite set of series resonant circuits

 $Z_0, \lambda/4$

 $V_{\rm dd}$

 R_1

Vin

П

sinusoidal current: shunt L₀C₀-circuit tuned to fundamental

> quarterwave transmission line as impedance transformer

$$R_1 = \frac{Z_0^2}{R_L}$$

6. Inverse Class F: second current and third voltage harmonic peaking

Load network

Harmonic impedance conditions at collector (drain):

 S_{21} simulation ($f_0 = 500$ MHz)

17

7. Inverse Class F: LDMOSFET power amplifier design example 500 MHz inverse Class F power amplifier with transmission lines

Optimum load network resistances at fundamental for different classes of operation

Class B:
$$R^{(B)} = \frac{V_{cc}}{I_1} = \frac{V_{cc}^2}{2P_1}$$

Class F: $R^{(F)} = \frac{4}{\pi} \frac{V_{cc}}{I_1} = \frac{4}{\pi} R^{(B)}$

Inverse Class F :

$$R^{(\text{invF})} = \frac{\pi}{2} \frac{V_{\text{cc}}}{I_1} = \frac{\pi^2}{8} R^{(\text{F})} = \frac{\pi}{2} R^{(\text{B})}$$

Load resistance in inverse Class F is the highest (1.6 times larger than in Class B) Less impedance transformation ratio and easier matching procedure 8. Practical high-efficiency RF and microwave Class F power amplifiers

Class F GaN HEMT power amplifier with input harmonic control

Input second-harmonic termination circuit is used to provide input quasi-square voltage waveform minimizing device switching time

Class AB biasing with small quiescent current

> RC-circuits at the input for stable operation

 characteristic impedance Z₂ and electrical length θ is tuned to form third-harmonic tank with output device capacitance C_{ds}

characteristic impedances Z₂ and Z₃ are chosen to provide conjugate impedance matching at fundamental

85% power-added efficiency for 16.5 W at 2 GHz

D. Schmelzer and S. I. Long, "A GaN HEMT Class F Amplifier at 2 GHz with > 80% PAE," IEEE J. Solid-State Circuits, vol. SC-42, pp. 2130-2136, Oct, 2007.

8. Practical high-efficiency RF and microwave Class F power amplifiers

Inverse Class F LDMOSFET power amplifier with quarterwave line

60% drain efficiency for 13 W at 1.78 GHz

F. Lepine, A. Adahl, and H. Zirath, "L-Band LDMOS Power Amplifiers Based on an Inverse Class-F Architecture," IEEE Trans. Microwave Theory Tech., vol. MTT-53, pp. 2007-2012, June 2005.

II. SWITCHED-MODE CLASS E POWER AMPLIFIERS

- 1. Effect of detuned resonant circuit
- 2. Basic Class E with shunt capacitance
- 3. Generalized Class E load network with finite dc-feed inductance
- 4. Parallel-circuit Class E
- 5. Class E approximation with transmission lines
- 6. Class E with quarterwave transmission line
- 7. Broadband Class E circuit design
- 8. Practical RF and microwave Class E power amplifiers

1. Effect of detuned resonant circuit

anode efficiency of 92-93% for resonant-circuit phase angles of 30-40°: inductive impedance at fundamental and capacitive at harmonics

> resonant frequency $f \approx (1.4-1.5)f_0$ f_0 – fundamental frequency

E. P. Khmelnitsky, Operation of Vacuum-Tube Generator on Detuned Resonant Circuit (in Russian), Moskva: Svyazizdat, 1962

Ioad current lags collector voltage so that series LC₀-circuit must appear inductive at operating frequency

> pulsed excitation with highest efficiency for conduction angles less than 180°

collector efficiency of 94% for 20 W
 500 kHz bipolar power amplifier with
 50% duty cycle

G. D. Ewing, *High-Efficiency Radio-Frequency Power Amplifiers*, Ph.D. Dissertation, Oregon State University, June 1964

2. Basic Class E with shunt capacitance

Idealized assumptions for analysis:

- transistor has zero saturation voltage, zero on-resistance, infinite off-resistance and its switching action is instantaneous and lossless
- RF choke allows only dc current and has no resistance
- total shunt capacitance is assumed to be linear
- reactive elements in load network are lossless
- loaded quality factor Q_L of series fundamentally tuned resonant L₀C₀ -circuit is infinite to provide pure sinusoidal current flowing into load
- for optimum operation 50% duty cycle is used

Idealized optimum or nominal conditions

$$v(\omega t)\Big|_{\omega t=2\pi} = 0$$
$$\frac{dv(\omega t)}{d\omega t}\Big|_{\omega t=2\pi} = 0$$

2. Basic Class E with shunt capacitance

Optimum circuit parameters :

$$L = 1.1525 \frac{R}{\omega} - \text{series inductance}$$
$$C = 0.1836 \frac{1}{\omega R} - \text{shunt capacitance}$$
$$R = 0.5768 \frac{V_{cc}^2}{P_{out}} - \text{load resistance}$$

Optimum phase angle at fundamental seen by switch :

$$= \tan^{-1}\left(\frac{\omega L}{R}\right) - \tan^{-1}\left(\frac{\omega CR}{1 - \frac{\omega L}{R}\omega CR}\right) = 35.945$$

2. Basic Class E with shunt capacitance

Nonlinear capacitance

Power loss due to non-zero saturation resistance

$$\frac{P_{\text{sat}}}{P_{\text{dc}}} \cong \frac{8}{3} \frac{r_{\text{sat}} P_{\text{out}}^2}{V_{\text{cc}}^2} \cong 1.365 \frac{r_{\text{sat}}}{R}$$

Power loss due to finite switching time

 $\frac{P_{\rm sw}}{P_{\rm dc}} \cong \frac{\tau_{\rm sw}^2}{12}$

For $\tau_{sw} = 0.35$ or 20° only 1% efficiency loss

For nonlinear capacitances represented by abrupt junction collector capacitance with $\gamma = 0.5$, peak collector voltage increases by 20%

3. Generalized Class E load network with finite dc-feed inductance

Optimum ideal voltage conditions across switch:

$$\frac{v(\omega t)}{d\omega t}\Big|_{\omega t=2\pi} = 0$$
$$\frac{dv(\omega t)}{d\omega t}\Big|_{\omega t=2\pi} = 0$$

 $i_{\rm R}(\omega t) = I_{\rm R} \sin(\omega t + \varphi)$ - sinusoidal current in load

- load network consists of dc-feed inductance L supplying also dc current, shunt capacitor C, series reactance X, bondwire inductance L_b, series fundamentally tuned L₀C₀ resonant circuit, and load R
- shunt capacitor C can represent intrinsic device output capacitance and external circuit capacitance

• active device is considered as ideal switch to provide instantaneous device switching between its on-state and off-state operation conditions

• series reactance X can be positive (inductance), zero and negative (capacitive)

3. Generalized Class E load network with finite dc-feed inductance

$$\omega^{2}(L + L_{b})LC\frac{d^{2}v(\omega t)}{d(\omega t)^{2}} + v(\omega t) - V_{cc} - \omega LI_{R}\cos(\omega t + \varphi) = 0$$

- second-order differential equation

$$\frac{v(\omega t)}{V_{cc}} = C_1 \cos(q\omega t) + C_2 \sin(q\omega t) + 1 - \frac{q^2 p}{1 - q^2} \cos(\omega t + \varphi)$$

where
$$q = 1/\omega \sqrt{(L + L_b)C}$$
, $p = \frac{\omega L I_R}{V_{cc}}$,

and coefficients C_1 and C_2 are defined from initial conditions

$$\omega CR = 1/q^2 \left(1 + \frac{L_b}{L} \right) \frac{\omega L}{R} \quad \text{-shunt capacitance}$$
$$\frac{\omega L}{R} = p \left(1 + \frac{L_b}{L} \right) / \left(\frac{\pi}{2p} + \frac{2}{\pi} \cos \varphi - \sin \varphi \right) \quad \text{-dc-feed inductance}$$
$$R = \frac{1}{2\pi^2} \left(\frac{\pi^2}{2p} + 2\cos \varphi - \pi \sin \varphi \right)^2 \frac{V_{cc}^2}{P_{out}} / \left(1 + \frac{L_b}{L} \right)^2 \quad \text{-load resistance}$$

3. Generalized Class E load network with finite dc-feed inductance Normalized load network parameters versus $q = 1/\omega \sqrt{LC}$, $L_{\rm b} = 0$

> $q \le 0.5$: close to Class E with shunt capacitance with positive (inductive) series reactance (X > 0)

> q = 1.412: parallel-circuit Class E with zero reactance (X = 0) – maximum load resistance R

 q = 1.468: maximum shunt capacitance C (maximum operating frequency f_{max}) with negative (capacitive) reactance (X < 0)

4. Parallel-circuit Class E

To define three unknown parameters q, φ and p, two ideal optimum conditions and third equation for zero reactive part of fundamental Fourier component are applied resulting to system of three algebraic equations:

$$v(\omega t)\Big|_{\omega t=2\pi} = 0$$
 $\frac{dv(\omega t)}{d\omega t}\Big|_{\omega t=2\pi} = 0$

 $V_{\rm X} = -\frac{1}{\pi} \int_{0}^{2\pi} v(\omega t) \cos(\omega t + \varphi) d(\omega t) = 0$

q = 1.412 p = 1.210 $\varphi = 15.155^{\circ}$

Optimum circuit parameters :

 $L = 0.732 \frac{R}{\omega} - parallel inductance$ $C = \frac{0.685}{\omega R} - parallel capacit$

 $R = 1.365 \frac{V_{cc}^2}{P_{out}} - load resistance:$ highest value highest value in Class E

4. Parallel-circuit Class E

Inductive impedance at fundamental

$$\phi = \tan^{-1}\left(\frac{I_{\rm X}}{I_{\rm R}}\right) = \tan^{-1}\left(\frac{R}{\omega L} - \omega RC\right) = 34.244^{\circ}$$

Current through capacitance

5. Class E with transmission lines: approximation

Two-harmonic collector voltage approximation

Optimum impedance at fundamental seen by device :

$$Z_{\text{net1}} = R \left(1 + j \tan 49.052^{\circ} \right)$$

electrical lengths of transmission lines I₁ and I₂ should be of 45° to provide open circuit seen by device at second harmonic

transmission-line characteristic impedances are chosen to provide optimum inductive impedance seen by device output at fundamental

T. B. Mader and Z. B. Popovic, "The Transmission-Line High-Efficiency Class-E Amplifier," *IEEE Microwave and Guided Wave Lett.*, vol. 5, pp. 290-292, Sept. 1995

5. Class E with transmission lines: approximation

 $Z_{\text{net}}(\omega_0)$

•

 $Z_{\rm net}(2\omega_0)$

 $Z_{net}(3\omega_0)$

parameters of parallel transmission line is chosen to realize optimum inductive impedance at fundamental

> output matching circuit consisting of series microstrip line with two shunt capacitors should provide capacitive reactances at second and third harmonics

on

on off

> **Current flowing** through collector capacitor

6. Class E with quarterwave transmission line

Optimum voltage conditions across switch:

$$\frac{v(\omega t)}{d\omega t}\Big|_{\omega t=2\pi} = 0$$
$$\frac{dv(\omega t)}{d\omega t}\Big|_{\omega t=2\pi} = 0$$

sinusoidal load current
50% duty cycle

 $\frac{d^2 i_{\rm C}(\omega t)}{d(\omega t)^2} + \frac{q^2}{2} i_{\rm C}(\omega t) + I_{\rm R} \sin(\omega t + \varphi) = 0 - \text{second-order differential equation}$

q

Boundary conditions:

$$i_{\rm C}(\omega t)\Big|_{\omega t=\pi} = 2i_{\rm R}(\pi)$$

 $\frac{di_{\rm C}(\omega t)}{d(\omega t)}\Big|_{\omega t=\pi} = \frac{V_{\rm cc}}{\omega L} - I_{\rm R}\cos(\varphi)$

$$p = \frac{\omega LI_{\rm R}}{V_{\rm cc}} \qquad q = 1/\omega \sqrt{LC}$$
$$= 1.649 \qquad p = 1.302 \qquad \varphi = -40.8^{\circ}$$

6. Class E with quarterwave transmission line

35

6. Class E with quarterwave transmission line

Optimum impedances at fundamental and harmonics for different Class E load networks

Class E load network	f_0 (fundamental)	$2nf_0$ (even harmonics)	$(2n+1)f_0$ (odd harmonics)
Class E with shunt capacitance			
Class E with parallel circuit			
Class E with quarterwave transmission line			

7. Broadband Class E circuit design

Reactance compensation load network

Reactance compensation principle

1 - impedance provided by 2 - impedance provided by series L₀C₀ resonant circuit parallel LC resonant circuit

summation of reactances with opposite slopes results in constant load phase over broad frequency range

Input load network admittance

$$Y_{\rm in} = \left(j\omega C + \frac{1}{j\omega L} + \frac{1}{R + j\omega' L_0}\right)$$
$$\omega' = \omega \left(1 - \frac{\omega_0^2}{\omega^2}\right) \qquad \omega_0 = 1/\sqrt{L_0 C_0}$$

To maximize bandwidth:

$$\left.\frac{d\operatorname{Im}Y_{\mathrm{in}}(\omega)}{d\omega}\right|_{\omega=\omega_{0}}=0$$

$$C + \frac{1}{\omega^2 L} - \frac{2L_0}{R^2} = 0$$

Optimum parameters for series resonant circuit in Class E mode

$$L_0 = 1.026 \frac{R}{\omega}$$
$$C_0 = 1/\omega^2 L_0$$

7. Broadband Class E circuit design

Broadband Class E power amplifier with reactance compensation

Drain voltage and current waveforms

LDMOSFET: gate length 1.25 um gate width 7x1.44 mm

- 1 drain efficiency > 71%
- 2 power gain > 9.5 dB
- > input power 1 W
- input VSWR < 1.4</p>
- > gain flatness $\leq \pm 0.3$

8. Practical RF and microwave Class E power amplifiers

High power LDMOSFET RF Class E power amplifier

Class B with zero quiescent current

> series inductance and ferrite 4:1 transformer is required to match device input impedance

L-type output transformer to match optimum 1.5 Ω output impedance to 50 Ω load

> quality factor of resonant circuit was chosen to be sufficiently low (~ 5) to provide some frequency bandwidth operation and to reduce sensitivity to resonant circuit parameters required value of Class E shunt capacitance is provided by device intrinsic 38 pF capacitance and external 55 pF capacitance

70% drain efficiency for 54 W at 144 MHz

H. Zirath and D. B. Rutledge, "An LDMOS VHF Class-E Power Amplifier Using a High-Q Novel Variable Inductor," *IEEE Trans. Microwave Theory Techn.*, vol. 47, pp. 359-362, Dec. 1999.

8. Practical RF and microwave Class E power amplifiers

Transmission-line low-harmonic GaN HEMT Class E power amplifier

short transmission line TL₁
 provides required series
 inductive reactance

output open-circuit stubs are tuned to be quarterwave at 2nd and 3rd harmonics and capacitive at fundamental

Input second-harmonic termination circuit is used to provide input quasi-square voltage waveform minimizing device switching time characteristic impedances Z₂ and Z₃ are chosen to provide load matching together with series line TL₁

74% power-added efficiency for 11.4 W at 2 GHz

H. G. Bae, R. Negra, S. Boumaiza, and F. M. Ghannouchi, "High-Efficiency GaN Classs-E Power Amplifier with Compact Harmonic-Suppression Network," Proc. 37th European Microwave Conf., pp. 1093-1096, 2007

III. SWITCHED-MODE CLASS FE POWER AMPLIFIERS

1. Basic load network and operation principle

2. Load network parameters and voltage and current waveforms

3. Design approximations with second-harmonic control (Class EF₂) and third-harmonic control (Class E/F₃)

1. Basic load network and operation principle

Class E idealized optimum conditions applied to Class F mode affected by shunt parasitic capacitance, with added series inductance

> symmetrizing action of shunt quarterwave line provides its voltage inverter mode resulting in similar waveform as in Class D or Class DE: it stores voltage waveform in traveling wave along its length which returns delayed by one-half fundamental period and inverted due to reflection from short-circuited end

Idealized optimum conditions

transistor has zero saturation voltage, zero on-resistance, infinite off-resistance and its switching action is instantaneous and lossless

1. Basic load network and operation principle

switch is turned off

dead time during charging or discharging process when current flow through shunt capacitance

half-wave symmetry of transmission-line current waveform: line attempts to do same work in first and second halves of cycle

> zero initial phase and duty cycle D < 0.5

2. Load network parameters and voltage and current waveforms

Optimum circuit parameters :

 ω

$$R = \frac{2\left(1 + \cos\tau_{\rm d}\right)^2}{\pi^2} \frac{V_{\rm cc}^2}{P_{\rm out}} - \log L = \frac{\tau_{\rm d} - \sin\tau_{\rm d}\cos\tau_{\rm d}}{\sin^2\tau_{\rm d}} \frac{R}{\omega} - \log L$$

ωR

 $C = \frac{\sin^2 \tau_{\rm d}}{1}$

ad resistance

ries inductance

- shunt capacitance

 $\tau_{\rm d}$ - dead time

Optimum impedances at fundamental and harmonics for Class F, **Class E and Class FE** load networks

	High-efficiency mode	f ₀ (fundamental)	$2nf_0$ (even harmonics)	$(2n+1)f_0$ (odd harmonics)
	Class F with quarterwave line		short	open
	Class E with shunt capacitance		C C	
A DI LINE AND LINE	Class FE with quarterwave line		short	

3. Design approximations with second-harmonic control (Class EF₂) and third-harmonic control (Class E/F₃)

Class E_2F (or F_2E) power amplifier

Idealized optimum conditions

$$v(\omega t)\Big|_{\omega t=2\pi} = 0$$
$$\frac{dv(\omega t)}{d\omega t}\Big|_{\omega t=2\pi} = 0$$

transistor has zero saturation voltage, zero on-resistance, infinite off-resistance and its switching action is instantaneous and lossless

ideal Class E load network with shunt capacitance

series resonant L₂C₂ circuit tuned to second harmonic

Z. Kaczmarczyk, "High-Efficiency Class E, EF₂ and E/F₃ Inverters," *IEEE Trans. Industrial Electronics*, vol. IE-53, pp. 1584-1593, Oct. 2006 3. Design approximations with second-harmonic control (Class EF₂) and third-harmonic control (Class E/F₃)

Class E/F₃ power amplifier

Idealized optimum conditions

$$v(\omega t)\Big|_{\omega t=2\pi} = 0$$
$$\frac{dv(\omega t)}{d\omega t}\Big|_{\omega t=2\pi} = 0$$

transistor has zero saturation voltage, zero on-resistance, infinite off-resistance and its switching action is instantaneous and lossless

ideal Class E load network with shunt capacitance

series resonant L₃C₃ circuit tuned to third harmonic

Z. Kaczmarczyk, "High-Efficiency Class E, EF₂ and E/F₃ Inverters," *IEEE Trans. Industrial Electronics*, vol. IE-53, pp. 1584-1593, Oct. 2006

References

Andrei Grebennikov RF and Microwave Power Amplifier Design McGraw-Hill 2004

Andrei Grebennikov and Nathan O. Sokal Switchmode RF Power Amplifiers Newnes 2007