POSTECH Activities on CMOS based Linear Power Amplifiers

Jan. 16. 2006

Bumman Kim, & Jongchan Kang MMIC Laboratory Department of EE, POSTECH

Presentation Outline

- Motivation
- Basic Design Approach
- CMOS PA Linearization
- 3.3 V Operating Single-chip CMOS PA
 - Lumped Doherty CMOS PA
- Conclusions

Small-signal equivalent circuit

C. E. Biber, M. L. Schmatz, T. Morf, U. Lott, and W. Bächtold, "A nonlinear microwave MOSFET model for SPICE simulators," IEEE Trans. Microwave Theory and Techn., Vol. 46, No. 5, pp. 604-610, May 1998.

Nonlinear Transconductance (g_m)

dominant nonlinear source at normal operation

Nonlinear gate-source capacitance (C_{gs})

 the dominant nonlinear source for a AB eass

[Nonlinear expansion coefficients for C_{qs}]

 $-\omega_1$

1.0

$$C_{gs} = C_{gs1} + C_{gs2}v_{gs} + C_{gs3}v_{gs}^{2}$$

$$i_{Cgs,\omega_{2}-\omega_{1}} = j(\omega_{2}-\omega_{1})C_{gs2}v_{gs,\omega_{2}}v_{gs,\omega_{1}}^{*}$$

$$i_{Cgs,2\omega_{2}} = j\omega_{2}C_{gs2}v_{gs,\omega_{2}}^{2}$$

$$i_{Cgs,3\omega_{2}} = \frac{3}{4}j\omega_{2}C_{gs3}v_{gs,\omega_{2}}^{3}$$

$$c_{gs,2\omega_{2}-\omega_{1}} = j(2\omega_{2}-\omega_{1})\frac{3}{4}C_{gs3}v_{gs,\omega_{2}}^{2}v_{gs,\omega_{1}}^{*} + j(2\omega_{2}-\omega_{1})C_{gs2}[v_{gs,2\omega_{2}}v_{gs,\omega_{1}}^{*} + v_{gs,\omega_{2}}v_{gs,\omega_{2}}^{*}]$$

[Extracted C_{qs}]

Analysis of PA-linearity using Volterra Series

Harmonic balance simulation of Volterra series

-2nd harmonic termination at the output & biasing close to $g_{\rm m3}$ zero crossing point

Harmonic distortion from C_{gs} is larger than that from g_m

Harmonic balance simulation of Volterra series

Assuming 0.3 nH of parasitic source inductance for grounding

The 2nd harmonic termination at the source suppresses the harmonic distortion at the input and output

Linear CMOS PA Design Approach

2nd harmonics at output from g_{m2}, r_{ds2}, C_{jd2}

2nd harmonics at input from C_{gs}, feedbacked 2nd harmonic

3rd harmonic by

g_{m3}

2nd harmonics termination at output

2nd harmonic termination at input

2nd harmonic termination at source

Optimum biasing & load line (Z_{load})

Unit power cell with DNW structure

DC_IV Comparisons

-0.05

-0.10

11'son 0.8 Vgs ILJ 0.5

-0.15 0.5 0.6 0.7 0.8 0.9 1.0 Vgs[V]

Extracted C_{ds}

[Nonlinear expansion coefficients for C_{gs}]

J. Su, H. Hsu, S. Wong, C. Chang, T. Huang and J. Y. Sun, "Improving the RF Performance of 0.18 um CMOS With Deep n-Well Implantation," IEEE Electron Device Letters, Vol. 22, No. 10, pp. 481-483, Oct 2001.

The calculated contributions for IMD3 generation using

Volterra series analysis

	Std.	DNW	14	Std.	DNW		
g _m contribution	-56.4 dBc	-54.78 dBc	C _{gs} contribution	-44.6 dBc	-55.9 dBc		
r _{ds} contribution	-72 dBc	-68.5 dBc	C _{jd} contribution	C-74 dBc	-85.5 dBc		
IMD3 of the standard device = -38.1 dBc IMD3 of the device with DNW = -42.1 dBc							
Center Frequency = 2.45 GHz, Tone-spacing = 2 MHz, Pin = -14 dBm							

DNW Effects of 0.18 um Balanced CMOS PA

RF performance comparison of the Balanced PA's

- P_{out}: 20.2 dBm, Gain: 18.7 dB, PAE: 35 % at P₁₀
- Linearity maintains under -45 dBc of IMD3 and -57 dBc of IMD5 for an output power backed-off more than 5 dB from P_{1dB}.

 PA with DNW improves the IMD3 and IMD5 about 7dB without disturbing the power performances (Pout, PAE)

3.3 V Operating Single-Chip CMOS PA

86

9

OF SCIEN

Modified Self-Biased Cascode

One-turn Inductor vs. Slab Inductor OF SCIE/O Q=5-15 Q=20-30

Magnetically Coupled Transformer

Integrated transformer performance F SCIENCE MIM Cap Cu or Al Metal (3um) Si (15 S/m) Substrate 4.7e-7~3.4e-Conductivity 7 S/m MIM Cap Size 600 x 7<mark>00</mark> Cap for MIM Cap 2fo short Loss 0.5~0.8 dB PAE 89~80 % Zout 13 +j*1

3.3 V operating Single-Chip CMOS PA (0.18 um process)

RF performance of 3.3 V Operating Single-Chip CMOS PA (2.4 GHz)

Technology	0.18 um CMOS			
Power Supply	3.3 V			
Frequency	2.4 GHz			
Area	1 x 1.7 mm ²			
RF performances at P_{1dB}	measured			
P _{out}	24.5 dBm			
Power gain	19.8 dB			
PAE	31 %			
OFDM signal Test	54 Mbps/64 QAM			
EVM	4.5 %	3 %		
Average power	18.8 dBm	17.9 dBm		
PAE	15.8 %	14 %		

Lumped Doherty CMOS PA for 2.4 GHz WLAN

86

9

OF SCIENC

Lumped Doherty Conversion Concept

Prototype of 2-Stage Lumped Doherty Circuit

RF performance of 3.2 V Operating Lumped Doherty CMOS PA

Comparison of Measured Results

		Gain Pou [dB] [dBi			PA	Ξ [%] @	
Design	Technology (um)		Pout _{max} [dBm]	Pout	P _{1dB}	Back-off	
				Poul _{max}		4 dB	8 dB
Ballweber	0.6	5	19	30	26	14	6
Giry	0.35	24.6	23.5	35	24	13	6
Sowlati	0.18	36	23	42	18	8	4
Ding	0.18	12	22	44	36	18	8
This work	0.13	1 23	23.2	62	60	38	20

Conclusions

- Basic design approach and linearization methods for CMOS PA are established.
- 3.3 V operation single-chip CMOS PA
- A circuit prototype for a linear CMOS PA with high voltage operation is proposed.
- The integrated transformer is a prominent solution for a balanced single-chip PA with low loss.
- Lumped Doherty CMOS PA
 - Proposed first-step for the fully integrated CMOS Doherty PA.
 Demonstrated good performances of CMOS PA

comparable to GaAs based PA