



Using S-Parameter and Load Pull Measurements to Validate Transistor Large-Signal Fundamental and Harmonic Tuning Performance

R.Varanasi<sup>1</sup>, J.Liu<sup>1</sup>, J.Paviol<sup>2</sup>, L. Dunleavy<sup>1,3</sup>, W.Clausen<sup>3</sup>

rVaranas@eng.USF.edu Jim.Paviol@Conexant.com wClausen@modelithics.com

 <sup>1</sup> University of South Florida, Department of Electrical Engineering, 4202 E. Fowler Ave., ENB 118, Tampa, FL 33620
 <sup>2</sup>Conexant Systems, Inc. Wireless Prod., 2401 Palm Bay Rd., Palm Bay, FL 32905 <sup>3</sup>Modelithics, Inc., 3650 Spectrum Blvd., Suite 170, Tampa, FL 33612







## Outline & Overview

- Intro
- Load Pull Test Setup and Devices Tested
- Small-Signal Comparisons: VNA vs. Load Pull
- VNA vs. Load Pull Compression at  $50\Omega$
- Fundamental TOI Tuning for Po, PAE, and TOI
- Harmonic Load Pull (HLP) TOI tuning results
- Conclusions
- References







## Introduction

- Harmonic Load Pull improves PAE.
  - Linearity effects are now investigated.
- Accuracy of a load pull system needs verification.
  - Delta-Gt method for Load, Source, & Harmonic Tuners.
  - Compare small-signal ANA measurements.
  - Power sweep ANA vs.  $50\Omega$  Load Pull compression.
  - CAE linear and non-linear model comparisons.
    - Load Pull results quantify Non-Linear model sims.







ONEXANT

**4odelithics** 

# Maury Microwave ATS Bench Setup

#### Power Block Diagram



#### Label: Block Diagram for 2nd and 3rd Harmonic Load Tuning

The Triplexer S-Parameters are created by measuring each signal path. Tuners are characterized at 2.45GHz, 4.9GHz and 7.35 GHz. S-Parameter blocks <S> accounted for the DUT Probes. Short Low Loss cables connect Cascade Probes.





#### 2.45 GHz Triplexer Characteristics



Insertion Loss: 0.235 dB at fo, 0.248 dB at 2fo, and 0.196 at 3fo. Return Loss: 19.77 dB at fo, 25.9 dB at 2fo, and 14.97 dB at 3fo.



# USF Delta-Gt Error Check



| HBT Delta-Gt N | leasurement |
|----------------|-------------|
|----------------|-------------|

#### pHEMT Delta-Gt Measurement

| Fixed Pull v                         | /s Phase |        |        |                           | Fixed Pull v                      | /s Phase |        |        |          |  |
|--------------------------------------|----------|--------|--------|---------------------------|-----------------------------------|----------|--------|--------|----------|--|
| Load Pull at 2.4500 GHz              |          |        |        | Load Pull at              | 2.4500 (                          | GHz      |        |        |          |  |
| Label: Triquint 2.45GHz DeltaGt OdBm |          |        |        | Label: CM10 DeltaGt aug19 |                                   |          |        |        |          |  |
|                                      |          |        |        |                           | $\Gamma$ Source = 0.0179< 24.75   |          |        |        |          |  |
|                                      |          |        |        |                           | $\Gamma Load2 = 0.0563 < -142.89$ |          |        |        |          |  |
| Phase                                | Mag      | Gt     | Gt(s)  | Delta Gt                  | Phase                             | Mag      | Gt     | Gt(s)  | Delta_Gt |  |
| degrees                              | lin      | dB     | dB     | dB                        | degrees                           | lin      | dB     | dB     | dB       |  |
| -179.82                              | 0.838    | -5.188 | -5.102 | -0.086                    | -177.52                           | 0.852    | -5.746 | -5.742 | -0.004   |  |
| -175.24                              | 0.352    | -0.424 | -0.523 | 0.099                     | -124.75                           | 0.852    | -5.323 | -5.659 | 0.336    |  |
| -122.25                              | 0.842    | -6.009 | -5.403 | -0.606                    | -97.58                            | 0.372    | -0.596 | -0.635 | 0.039    |  |
| -87.04                               | 0.296    | -0.691 | -0.458 | -0.234                    | -86.87                            | 0.844    | -5.171 | -5.374 | 0.203    |  |
| -85.31                               | 0.852    | -6.399 | -5.774 | -0.625                    | -50.21                            | 0.831    | -5.095 | -4.994 | -0.102   |  |
| -49.22                               | 0.860    | -6.760 | -6.061 | -0.699                    | -4.99                             | 0.819    | -5.137 | -4.699 | -0.438   |  |
| -14.66                               | 0.031    | -0.126 | -0.025 | -0.101                    | 7.10                              | 0.282    | -0.647 | -0.315 | -0.332   |  |
| -4.64                                | 0.866    | -6.346 | -6.204 | -0.141                    | 51.57                             | 0.817    | -5.463 | -4.722 | (-0.740) |  |
| 3.01                                 | 0.423    | -1.259 | -0.950 | -0.309                    | 88.17                             | 0.824    | -5.615 | -4.964 | -0.651   |  |
| 52.49                                | 0.861    | -5.611 | -5.903 | 0.292                     | 91.43                             | 0.032    | -0.211 | 0.000  | -0.211   |  |
| 86.94                                | 0.854    | -5.056 | -5.570 | 0.515                     | 96.37                             | 0.412    | -1.253 | -0.823 | -0.430   |  |
| 87.45                                | 0.505    | -1.050 | -1.225 | 0.175                     | 129.54                            | 0.837    | -5.736 | -5.335 | -0.402   |  |
| 127.02                               | 0.844    | -4.947 | -5.221 | 0.274                     | 178.81                            | 0.505    | -1.367 | -1.346 | -0.022   |  |
| 180.18                               | 0.838    | -5.188 | -5.102 | -0.086                    | 182.48                            | 0.852    | -5.746 | -5.742 | -0.004   |  |

• Post-calibration Delta Gt check verifies accuracy of Load Pull System S-Parameters.

"PA Load Pull Error Limits using Delta G<sub>t</sub> Contours," UCSD PA Workshop, 2003

• < 1dB is a minimum accuracy for a Harmonic Load Pull System, 0.5dB the goal.

•Delta-Gt should be run over all gamma points and frequencies during off-shift times.

•A Delta Gt setup at each of the harmonic paths is required for validation.

•The harmonic path is calibrated as the fundamental & verified.





### **Devices** Tested

• GaAs pHEMT

– Class AB: Vds=8V, Ids=165 mA (~25% I<sub>max</sub>)

• InGaP HBT

– Class AB: Vce=3.3V, Ic=20 mA (~25% I<sub>max</sub>)

-2.5kA/cm<sup>2</sup> to 15kA/cm<sup>2</sup> Ae=405sq.um

- Test Environment:
  - Power: P1dB and P-3dB of device.
    - Po, Gp, PAE, and TOI contours plot optimums & trades
    - Final power sweep from Linear to P+6dB saturation.







со **н е ха** н т<sup>.</sup>

**Model**ithics

### pHEMT Measured vs. Model S-Parameters







### pHEMT Small-Signal Load Conjugate Match

Fload@ 0.496< 161.28



**GL circles from S-Par. Meas.** 

Fload @ 0.4785< 160.15



Maury – Low power tune





#### pHEMT Large-Signal Source Pull









**CONEXANT** 

#### pHEMT Large-Signal Load Pull





Marker: Phase = 153.91 degrees

**P** P Modelithics





со **н е х а н т**<sup>.</sup>

pHEMT 2<sup>nd</sup> Harmonic Load Tuning









## pHEMT 2<sup>nd</sup> Harmonic Load Tuning

|              | Γ(2fo)      | Gain @<br>Γ(2fo) | Pout @<br>Γ(2fo) | PAE @<br>Γ(2fo) | ΤΟΙ @<br>Γ(2fo) |
|--------------|-------------|------------------|------------------|-----------------|-----------------|
| Measurements | 0.786<4.77° | 14.33 dB         | 27.33 dBm        | 34.65 %         | 35.483 dB       |
| Simulations  | 0.8<10°     | 14.526 dB        | 27.526 dBm       | 32.53 %         | 34.952 dB       |













# pHEMT Summary & Conclusions

- Reasonable S-Parameter Model Match
  ADS EE-HEMT extraction was accurate.
- Large Signal Source and Load Pull errors
   0.5~0.75dB range also appear reasonable.
- Modeled Power Sweep Po and IP3 are optimistic by up to 5dB at < P1dB.</li>
- System verification means we should take the Load Pull Data as the reference.
  - Model appears accurate for the pHEMT







со **м е х а м т**<sup>.</sup>

**Model**ithics

#### HBT Small-Signal S-Parameters







#### со **N E X A N T**<sup>.</sup>

#### HBT Large-Signal Source Pull



**Model**ithics





**Model**ithics





# **HBT** Summary

- Accurate S-Parameter model prediction.
  Phase within 5°, magnitude within 0.05.
- Power and Gain predicted by <1 dB.</li>
- TOI prediction is optimistic at < P1dB.
- 2fo tuning makes an impact for Class AB.
   TOI increased 2 dB near open circuit Z.





# Conclusions

- Characterization of Maury Harmonic Tuning using Triplexers needs Delta Gt system error validation runs.
  - Harmonic Delta Gt paths should be setup as the primary path fundamental, calibrated, and verified using the Delta Gt technique.
- TOI is a function of Harmonic Tuning
  - Results depend upon device technology.
  - Improvements are not as dramatic as PAE.







# References

- Paviol, J., Kueckels, E., Varanasi, R., & Dunleavy, L.D., <u>"PA Load Pull Error Limits using Delta G<sub>t</sub> Contours,"</u> PA Conference, 2003
- Spirito, M., de Vreede, L., Nanver, L., Weber, S., Burghartz, J.N., <u>"Power Amplifier PAE and Ruggedness Optimization by Second Harmonic Control,"</u> IEEE Journal of Solid-State Circuits, Vol. 38, No.9, September 2003, pp. 1575-1583.
- F. van Rijs, R. Dekker, H.A. Visser, H.G. A. Huizing, D. Hartskeerl, P.H.C. Magnee, and R. Dondero, <u>"Influence of output impedance on</u> <u>power added efficiency of Si-bipolar transistors,"</u> in IEEE MTT-S Dig. Tech. Papers, Boston, MA, 2000, pp. 1945-1948.
- R. Mahmoudi, M. Spirito, P. Valk, and J. L. Tauritz, <u>"A novel load and source tuning system for balanced and unbalanced WCDMA power amplifiers,"</u> in 54<sup>th</sup> ARFTG Conference Digest, Atlanta, GA, Dec. 1999, pp. 1-9.
- Watanabe, S., Takatuka, S., Takagi, K., Kuroda, H., and Oda, Y., <u>"Simulation and Experimental Results of Source Harmonic Tuning on</u> <u>Linearity of Power GaAs FET under Class AB Operation,"</u> 1996 IEEE-MTT-S Digest, pp. 1771-1774
- Ghannouchi, F.M., Beauregard, F., Kouki, A.B., <u>"Large Signal Stability and Spectrum Characterization of a Medium Power HBT Using Active Load Pull Techniques,</u>" IEEE Microwave and Guided Wave Letters, Volume 4, Number 6, June 1994, pp. 191-193.

