

Geometrical Effect Analysis on f_T and f_{max} of 0.18 μm SiGe HBT

By

Ping-Chun Yeh, Chih-Hung Hsieh, Chwan-Ying Lee*, Yu-Lin Chu*, Kuan-Lun Chang*, Denny Tang *, John Chern* and Hwann-Kaeo Chiou.

Department of Electrical Engineering
National Central University, Taiwan
*Taiwan Semiconductor Manufacturing Company

Outline

- 0.18 μm SiGe power cell design
- Power cell analysis

I_c- V_{CE} Curves

Forward Gummel plot

Parallel plate Capacitor on Dielectric substrate

Back-End 3D-EM simulation

Device f_T and f_{max}

Transit time extraction

Devices performance comparison

- Status
- Conclusion

Purpose

- The purpose of this work is to analyze the geometrical effects of parameters f_T and f_{max} of 0.18 μm high speed SiGe HBTs technology.
- The three unit-cell layout design are proposed to investigated the geometrical effect in this study.
- The standard unit-cell can be applied in power cell for power amplifier design.

0.18 µm SiGe power cell design

 \mathbf{B}_1

In A_1 Structure, the base feed has no overlap with the collector trace In B_1 Structure, the base fingers have overlap with the collector ring

Power cell analysis: I_c- V_{CE} Curves

$$I_b = 30 \mu A - 150 \mu A$$

 $I_b = 60 \mu A - 300 \mu A$

Measured I_V curves for three devices $(A_1, B_1, and C_1)$ and two devices $(A_2 and B_2)$ demonstrate the similar dc performance.

Forward Gummel plot

Measured Forward Gummel plots ($V_{BC} = 0.5$ V) for three devices (A_1 , B_1 , and C_1) and two devices (A_2 and B_2) demonstrate the similar dc performance.

National Central University

Parallel plate Capacitor on Dielectric substrate

Total parallel plate capacitance

$$\longrightarrow C_{Total} = C_P + 2C_{fx} \times W + 2C_{fy} \times u \tag{1}$$

Back-End 3D-EM Simulation

Side View

Back-End 3D-EM Simulation(cond't)

Device f_T and f_{max}

Total emitter-collector delay time

$$\tau_{ec} = \tau_b + \tau_c + \frac{\eta KT}{qI_C} (C_{BE} + C_{BC}) + (R_E + R_C)C_{BC} = \frac{1}{2\pi f_T}$$
 (1)

The well-known formula for maximum oscillation frequency

$$f_{\text{max}} = \sqrt{\frac{f_T}{8\pi R_{BB}C_{BC}}} \tag{2}$$

Device f_T **Performance**

Measured cutoff-frequency vs. collector current density.

Device f_{max} **Performance**

Measured maximum oscillation frequency vs. collector current density.

Device transit time extraction

SiGe HBTs	$\mathbf{A_1}$	B ₁	C ₁	$\mathbf{A_2}$	B ₂
$\frac{\tau_b + \tau_c}{(\mathbf{psc})}$	0.946	1.063	0.935	1.153	1.374

Measured total emitter-collector delay time vs. inverse collector current.

$$\tau_b + \tau_c = \tau_{ec} - (R_E + R_C)C_{BC}$$
 At Intercept Point (1)

RC Charging time

Performance summaries of SiGe HBTs with different layouts

SiGe HBTs	$\mathbf{A_1}$	B ₁	C ₁	$\mathbf{A_2}$	B ₂
Emitter fingers	8	8	8	16	16
Base fingers	9	9	9	18	18
f _T (GHz)	73	65	71	59	55
f _{max} (GHz)	43	41	44	41	40

The perfromance of the f_T is significantly improved by 8 GHz higher for the slightly in layout arrangement.

Device equivalent components of SiGe HBTs with different layouts

SiGe HBTs	$\mathbf{A_1}$	B ₁	C ₁	$\mathbf{A_2}$	\mathbf{B}_2
R _{BB} (Ohm)	11.68	11.09	11.36	6.31	6.45
R _C (Ohm)	5.53	5.68	5.58	3.53	3.46
R _E (Ohm)	1.19	1.23	1.27	0.73	0.68
C _{BC} (fF)	139.12	148.45	141.3	247.15	255.84

Both A_2 and B_2 structures are almost scalable with A_1 and B_1 structures.

Transit time analysis of SiGe HBTs with different layouts

	$\mathbf{A_1}$	B ₁	C_1	$\mathbf{A_2}$	$\mathbf{B_2}$
SiGe HBTs					
Intercept (psec)	1.882	2.088	1.903	2.208	2.435
$(\mathbf{R_E} + \mathbf{R_C})\mathbf{C_{BC}}$ (\mathbf{psec})	0.936	1.025	0.968	1.055	1.061
$\tau_{\rm b} + \tau_{\rm c} ({\rm psc})$	0.946	1.063	0.935	1.153	1.374

Status

The High Voltage standard unit-cell which can be applied in power cell for power amplifier design.

Current gain collapse for pitch= $2\mu m$ device. Selfheating for device with pitch= $2\mu m$ is much worse than that for device with pitch= $6\mu m$.

Conclusion

- We have analyzed the geometrical effects of parameters f_T and f_{max} of 0.18 μm high speed SiGe BiCMOS technology. The device scaling is feasible in the standard unit-cell.
- The key factor of the layout is the manner of overlap structure between the base fingers and collector traces. Although the smaller overlap of the base fingers in B_1 , it gets proximity effect and eventually obtains more parasitic capacitances than those of C_1 and A_1 .
- The high frequency performances are related with the associated parasitic junction capacitances C_{BC} and τ_b + τ_c . The significantly improvement in f_T is obtained by considering the routes in base and collector.
- The standard unit-cell can be applied in power cell for power amplifier design.