

A 60-W L-Band Class-E/F_{odd,2} LDMOS Power Amplifier Using Compact Multilayered Baluns

Feiyu Wang and David B. Rutledge

California Institute of Technology September 13, 2004

CALTECH

Introduction

- Switching-mode amplifiers are promising candidates for high-efficiency applications with limited bandwidth and linearity.
- Class-E/F power amplifier combines soft-switching of Class-E amplifiers and harmonic control of Class-F⁻¹ amplifiers
- This amplifier is designed for a JPL L-band space-radar application which requires
 - □ High Efficiency
 - □ Compact size, light-weight, and planar geometry
- Agenda
 - Push-Pull Class-E/F Power Amplifiers
 - □ Microstrip Balun Design
 - Measurement Results and Conclusion

S. Kee, *et al.* "The Class-E/F Family of ZVS Switching Amplifiers." *IEEE Trans. Microwave Theory Tech.*, June 2003.

Push-Pull Class-E/F_{odd} Family of Amplifiers

- Theory of Operation:
 - □ Two transistors operated as two switches in a push-pull pair.

CALTECH

- High-impedance resonant circuit at the fundamental frequency between the switches.
- □ The load is tuned slightly inductive to achieve zero-voltage switching (ZVS).
- Terminate odd harmonics due to the pushpull configuration.
- Combines the advantages of Class-E Amplifier and Class-F⁻¹ Amplifier
 - Zero-Voltage Switching
 - Low Peak Voltage
 - Low RMS Current
 - Simple and Compact

Kobayashi, H., Hinrichs, J.M., Asbeck, P.M. "Current-Mode Class-D Power Amplifiers for High-Efficiency RF applications." *IEEE Trans. Microwave Theory Tech*, Dec. 2001.

Push-Pull Class-E/F_{odd,2} Power Amplifier

- The drain bias line is used as an additional 2nd harmonic tank, which shapes the waveform to achieve low RMS current.
- Requires input and output baluns for coaxial input and output.
 - Compact
 - Low-loss
 - Planar geometry

A Typical Push-Pull Amplifier Design

Microstrip Baluns

Side-coupled Microstrip Balun

- CALTECH
- Traditional microwave baluns such as hybrid rings are large in size at 1 GHz.
- Microstrip Balun
 - Use two short sections of transmission lines as two magnetically coupled inductors
 - One port of the secondary inductor is grounded
- Advantages
 - □ Low loss, compact and planar
- Disadvantage
 - \Box Low coupling coefficient: k~0.35

King-Chun Tsai, Paul Gray. "A 1.9-GHz, 1-W CMOS Class-E Power Amplifier for Wireless Communications." *IEEE J. Solid-State Circuits*, July 1999.

Tightly-Coupled Microstrip Baluns

Side-coupled Microstrip Balun

Interdigitated Microstrip Balun

Broadside-Coupled Microstrip Balun

- To achieve tight coupling, interdigitated microstrip baluns and broadside-coupled microstrip baluns may be used.
- Coupling coefficients of different microstrip baluns
 - \Box Side-coupled: k~0.35
 - □ Interdigitated: k~0.50
 - Broadside-coupled: k~0.70
- Simulated Loss of the balun is 5.2%
 - □ 2.6% in the copper
 - □ 2.6% in the capacitors

Impedance Transformation

- Substitute in the equivalent circuit model of the balun and analyze the optimum impedance seen by the switches.
- The geometry of the balun is optimized based on the discrete inductance and capacitance values
- Electromagnetic simulator, SONNET, was used for the design.

Power Amplifier Photo

- Transistor used: Motorola LDMOS MRF 284
- Built on a Duroid substrate with a dielectric constant of 2.2
- Size: 3.5 cm x 5 cm

Simulated Class-E/F_{odd,2} Waveforms

- The voltage waveform is nearly a half sinusoid.
 - □ Reduce the peak voltage compared with a Class-E amplifier
- The current waveform is a relatively square shape.
 - □ Reduce the RMS current compared with a Class-E amplifier

Gain and Efficiency

- At 1100 MHz, Pin = 4W, Vdd = 32V, Vgg = 2V
- Drain Efficiency = 70%, PAE = 65%, Gain = 11 dB, Pout = 60W

Frequency Response

- With Pin = 3W, Vdd = 28V, Vgg = 3V
 - \Box 3dB gain bandwidth = 150 MHz
 - \Box -10dB input return loss bandwidth = 20 MHz

Output Power Spectrum

MSK Signal Test

Phase Trellis

 Measured results show almost no distortion in the output MSK power spectrum

CALTECH

PL

- Measured Error Vector Magnitude (EVM)
 - □ EVM (Peak): 0.5%
 - □ EVM (RMS): 0.2%

Conclusion: Performance Comparison

	<u>This Work</u>	Long <i>et al</i> .	<u>Le Gallou <i>et al.</i></u>	<u>Adahl et al.</u>
	(Caltech)	(UCSB)	(Alcatel)	(Chalmers)
Power	60 W	13 W	10 W	10 W
Gain	11 dB	14 dB	13 dB	13 dB
PAE	65%	58%	66%	66%
3-dB BW	150 MHz	N/A	>50 MHz	50 MHz
Class	Class $E/F_{odd,2}$	Class D ⁻¹	Class F ⁻¹	Class E
Freq	1.1 GHz	1.0 GHz	1.5 GHz	1.0 GHz
Device	Motorola	Ericsson	UMS	Motorola
	Si LDMOS	Si LDMOS	Custom	Si LDMOS
	MRF 284	PTF 10135	GaAs HBT	MRF 282
Size	5 cm x 3.5 cm	6 cm x 20 cm	Confidential	10 cm x 10 cm

Acknowledgement

- Authors would like to acknowledge support from Jet Propulsion Laboratory and Caltech's Lee Center for Advanced Networking.
- We appreciate many helpful conversations with Constantine Andricos, Wendy Edelstein, Alina Moussessian, and Sander Weinreb.