28V High Efficiency High Linearity InGaP/GaAs Power HBT

N.L. Wang, W. Ma, C. Dunnrowicz, X.Chen, H.F. Chau, X.Sun, Y.Chen, B.Lin,

- **EiC Corporation**
- I.L.Lo*, C.H. Huang*, M.H.T.Yang*, Visual Photonics Epitaxy Co. Ltd.

C.P. Lee, National Chiao Tung Univ., Hsinchu, Taiwan

Agenda

- Introduction
- 28V Operation InGaP/GaAs HBT Design
- Circuit Design and Assembly
- Experiment Results
- Conclusion

Introduction

Excellence in Communications

3

28V InGaP/GaAs HBT Power Transistor

Background

- The best InGaP/GaAs HBT designed for 3-8V operation achieved excellent linearity and 10¹⁰ hours @ T_i=150°C
- 28V HBT was demonstrated as a discrete device for higher power operation
- Flip chip was attempted to reduce thermal resistance

EiC's Present Effort

- Build MMIC compatible with existing assembly approach
- Design SOA (safe operation area) and ruggedness
- Provide high linearity

28V Operation InGaP/GaAs HBT Design

EiC Corp.

Excellence in Communications

5

Design of 28V InGaP/GaAs HBT

- BV_{cbo}~70V, BV_{ceo}~35V
- Conventional 100µm thick substrate MMIC approach is adopted
- Thermal resistance design of HBT layout was done with proprietary program
- SOA (Safe Operation Area) through proper ballasting was designed with another proprietary program
- Initial "wafer level reliability" study result is very similar to the low voltage InGaP/GaAs HBT

Measured I-V Curve vs. Designed SOA for A_e=1500μm²

Total Emitter Area 1500um2. This is the building block for larger size HBT *EiC* Corp.

2003 PA Workshop 6-2

Power HBT Design

- Multi-finger building block is paralleled in large size HBT
- Patented feed structure to provide minimum phase lag from the input feed to the HBT fingers and minimum variation of phase of RF signal at each finger

Circuit Design and Assembly

Excellence in Communications

9

On-chip Circuit Design

- Bias circuit (based on current mirror), RF choke and input pre-match circuit are designed on the same chip with the power HBT
- Temperature compensation is achieved through the current mirror
- Output matching is done off-chip
- Input matching is completed by off-chip matching

Basic Circuit Design

EiC Corp.

2003 PA Workshop 6-2

Excellence in Communications

Assembly

- Standard MMIC assembly procedure is followed:
 - The IC die is 4 mil thick
 - AuSn eutectic attachment is used
 - 1mil gold wire bond connects the die to the hybrid circuit
- No reliability concern about the assembly approach

Experiment Results

EiC Corp.

Excellence in Communications

13

Highlights

- Thermal resistance of 30-35°C/W was measured for the building block of A_e =1500 μ m² HBT
- Output power scales with HBT size to 25W at 900MHz, while maintaining the efficiency over 60%.
- Two tone test IMD3 maintains below –40dBc until reaching saturation power.
- At 900MHz under CDMA2000 9 fwr ch condition, 4.5W with η_c=42% was measured with ACLR1=-45dBc / ACLR2=-58dBc, and 35% at ACLR1=-50dBc
- At 2GHz under CDMA2000 9fwr ch condition, 0.5W with η_c =32% is achieved at ACLR1=-50dBc
- At 2GHz under WCDMA, 23dBm with η_c=18% at ACLR1=-45dBc

Temperature Compensated Bias Circuit

♦ <9% change of Icq over –45 to +85°C range</p>

Gain / Efficiency of HBT with A_e=1500 μm²

2003 PA Workshop 6-2

Thermal Resistance

- 30 to 35°C/W thermal resistance is measured from the HBT of Ae=1500um²
- Measurement relies on the Vbe vs.Temperature relationship
- At full power operation, temperature rise is 50°C

Output Power vs. HBT Size @900MHz

Emitter size	1500	3000	6000	12000
Pout(dBm)	35	38	41	44
Gain(dB)	16.8	15.34	13.18	9.92
η _c %	70	71	68	61

Excellence in Communications

Two Tone Test Result @ 2GHz

Single tone CW P1dB is 32.5dBm; Gss=13.2dB

Output power is average. Each tone power is 3dB lower; PEP is 3dB higher

2003 PA Workshop 6-2

Excellence in Communications

CDMA2000 Test Result

- Efficiency is 32 to 35% at ACLR1=-50dBc
- At 900MHz, 36.5dBm is achieved at ACLR1=-45dBc with 42% efficiency. 35dBm is achieved at ACLR1=-50dBc. HBT size is 4 building blocks.
- At 2000MHz, 27dBm is achieved with ACLR1=-50dBc from 1 building block.

EiC Corp. Excellence in Communications

WCDMA Test Method 1

- Peak to average ratio is 9.8dB
- P1dB is 32.5dBm
- At ACLR1=-45dBc, Pout is 23dBm with 18% efficiency

EiC Corp.

Conclusion

Key Advantages

- InGaP/GaAs HBT achieves high efficiency: over 60% at 2GHz
- Excellent linearity under modulated signals
- Long lifetime and stable gain is expected from the standard InGaP/GaAs HBT result

Major Achievement

- 25W is achieved in the standard MMIC approach
- InGaP/GaAs HBT can be further developed to serve the high power / high reliability applications

Acknowledgment

- The authors like to thank Mr. Jerry Curtis for his encouragement
- Many colleagues' invaluable support on this project is also acknowledged here

