

"PA Load Pull Error Limits using Delta G_t Contours"

by Jim Paviol, Eric Kueckels*, Ravi Varanasi** & Larry Dunleavy**

Presented by Jim Paviol, Sr. Principal Systems Engineer, GlobespanVirata - PRISM Wireless 2401 Palm Bay Rd. NE, MS62B-017; Palm Bay, FL 32905 (321)-724-7081

*Maury Microwave; Ontario, CA 91764-4804 (518)-857-6224; Maury: (919)-987-4715

**University of South Florida (USF); EE-WAMI Center, Tampa, FL 33620 (813)-974-2574

• Load Pull tuners sweep all reflection coefficient space.

GlobespanVirata

- Maury Load Pull Tuner Systems are used for this presentation.
- Tuners characterizations are used in gain contour calculations:
 - Accuracy of S-Parameter characterization is critical.
 - Repeatability of connectors and cables are important.
 - The Power Block Diagram needs to be set up properly.
- Delta G_t can be used to confirm the system accuracy.
 - Insert a characterized low loss through between tuners.
 - Sweep out the reflection coefficients for the tuner.
 - Initially the outside ring with 45° points and the center.
 - Over-night sweeps of all reflection space and frequencies.
 - Both Source and Load tuners should be verified.
 - Start with a simple coax system and then progress to more complex on-wafer and diplexer or triplexes setups.

• The three types of RF Gain:

GlobespanVirata

– Available Gain =(available output power)/(available input power)

$$G_{a} = f(\Gamma_{S}, [S]) = \frac{(1 - |\Gamma_{S}|^{2})|S_{21}|^{2}}{|1 - S_{11}\Gamma_{S}|^{2}(1 - |\Gamma_{2}|^{2})} where, \Gamma_{2} = S_{22} + \frac{S_{12}S_{21}\Gamma_{S}}{1 - S_{11}\Gamma_{S}}$$

Power Gain =(delivered output power)/(delivered input power)

$$G_{p} = f([S], \Gamma_{L}) = \frac{|S_{21}|^{2}(1 - |\Gamma_{L}|^{2})}{(1 - |\Gamma_{1}|^{2})|1 - S_{22}\Gamma_{L}|^{2}} where, \Gamma_{1} = S_{11} + \frac{S_{21}S_{12}\Gamma_{L}}{1 - S_{22}\Gamma_{L}}$$

Transducer Gain=(delivered output power)/(available input power)

$$G_{t} = f(\Gamma_{S}, [S], \Gamma_{L}) = \frac{(1 - |\Gamma_{S}|^{2})|S_{21}|^{2}(1 - |\Gamma_{L}|^{2})}{|1 - S_{11}\Gamma_{S}|^{2}|1 - \Gamma_{2}\Gamma_{L}|^{2}}$$

A function of Both $\Gamma_S \& \Gamma_L$.

GlobespanVirata Delta G_t Minimum Configuration

- Delta G_t (dB)= G_t{measured} (dB)- G_t[S] {calculated} (dB).
- DUT Available Input Power can be calculated rigorously:
 - Using Pre-Calibrated Tuner S-Parameters and Z_{source}.
- *Delivered Output Power* is measured by the Power Sensor.
- A low loss thru is used for the DUT in Delta G_t errors testing.
- Delta G_t error is minimum near Z_o, maximum at high VSWR.

Label: Delta_Gt Minimum Configuration Test

Delta G_t'Setup Options

• Delta G_t requires "Use DUT S-parameters in Power Measurement.

Snpw - [C:\Program Files\Maury\ATS300\De i File Edit View Setup Calibrate Measure F	Main-Menu \rightarrow Setup \rightarrow Options \rightarrow Use DUT-S	
S-Parameter Block Diagram Noise Block Diagram Power Block Diagram		v
Power Instruments	System Noise Power Intermod ACP User	<u>^</u>
Options Default Files/Directories	Cal RF Source Match: O No O Yes O Use .S1P file Prompt for PM Zero: O No O Yes	
Characterize Tuners Characterize Noise source. Characterize Power sensor	Use DUT-S in Power Meas: O No O Yes Snap to Cal'd Power: O No O Yes	
Go to local Test GPIB Interface Debug Mode	Interpolated Tuning: No Yes Move Default Z from pull data: No Measured Calculated PM Display Units d Res (C) V(attal) 	
Label: Delta_Gt Minimum Configuratio	PM Display Offset O No Yes Pin Tolerance (dBm): 0.2 Pout Tolerance (dBm): 0.2	
Setup Measurement Options	Duty Cycle (%): 100 Pulse Repetition Rate (kHz): 10 Spurious Sweep Signal Bandwidth (MHz): 50 Sweep Range (GHz) Start: 0.05 Stop: 20	
	Gain Reference Image: Gain Content of Content o	

Delta G_t Contours: Power Calibration

🛞 Snpw - [C:\Program File:	s\Maury\AT5300\Delta_G	t_Test.cfg]			
🛁 File Edit View Setup	Calibrate Measure Fixture	Window H	Power Calibration	1-1-1	×
<u> </u>	Read Tuner Files SNP System		Frequencies (GHz) Available: 4.9000 GHz to 5.90	100 GHz, 6 Frequencies	
Power Blo	2 Port S-Parameters 1 Port S-Parameters		4.9000 5.1000 5.3000 5.5000	Add Frequency Add Frequency Delete All	Jency Range
	Noise	Nou Col	5.7000 5.9000	Set to Available Freque	
<mark>╺──</mark> ╸╸	Intermod ACP	Get Cal File Cal Vector			
	Initialize Tuners Go to Z0	2 1	-Thru s-parameters S-parameter file name: C:\Program Files\Maury\ATS3	00'DataWy/V8021A2thru_8freq	Browse
Label: Delta_Gt Mir	nimum Configuration Test	(Output=E4	Programmed power range (dBr Start: -30 St	m) top: 10 Step:	1
Do a new power calibration			Offset of RF Source 2 compare	ed to RF source 1:	Cancel

Delta G_t Contours: Source Pull Set-up

GlobespanVirata

Delta G_t Contours: Measure \rightarrow Power

🗲 GlobespanVirata

Delta G_t Contours: Table

🖲 Snpw - [Fixed	Pull v s Phase]					
📃 Eile Edit Vie	w <u>W</u> indow <u>H</u> e	lp				_ 8 ×
<u>⊜ & ? №</u>						
Fixed Pull	vs Phase					
Source Pull	at 4.900	O GHz				
Label:						
ZLoad (Ohms) = 49.24	+ j 1.92		1		
Phase	Gt	Gt (s)	Delta_Gt	Pin_avail	Pin_deliv	
degrees	dB	dB	dB	dBm	dBm	
-178.85	-6.706	-5.524	-1.182	-10.000	-19.425	
-130.55	-7.150	-5.767	-1.384	-10.000	-19.764	
-91.01	-7.044	-6.405	-0.638	-10.000	-19.141	
-88.01	-1.431	-1.193	-0.238	-10.000	-11.636	
-46.42	-6.595	-6.920	0.325	-10.000	-17.743	
-32.28	-0.053	-0.031	-0.023	-10.000	-10.137	
-1.22	-0.592	-1.089	0.496	-10.000	-10.550	
3.57	-5.900	-7.098	1.198	-10.000	-16.866	
41.38	-5.705	-6.913	1.208	-10.000	-16.282	
84.79	-0.660	-0.993	0.332	-10.000	-10.825	
92.30	-5.611	-6.502	0.891	-10.000	-16.719	
138.19	-6.300	-6.012	-0.288	-10.000	-18.164	
173.15	-1.398	-0.831	-0.568	-10.000	-11.821	
181.15	-6.706	-5.524	-1.182	-10.000	-19.425	
For Help, press F1						NUM /

Delta G_t Contours Phase Plot for VSWR=15

Snpw - [Fixed Pull vs	Phase]				
Fixed Pull vs Ph	lase				
Load Pull at 4.	9000 GHz				
∆ Delta_Gt:	0.19 dB				
-0.10 to 0.	40 dB				
		a that a state			
Marker: Phase =	0.00 degrees				
Label:					
Delta_Gt LP Test	-VSWR=15:1 SCALE	-0.1 to 0.4dB			
L					
Fixed Pull vs Ph	lase				
Load Pull at 4.	9000 GHz				
Label: Delta_Gt	LP Test-VSWR=15:1	SCALE -0.1 to 0.4dB			
ZSource (Ohms) =	: 50.00 + j 0.00				
Phase Delt	a_Gt				
degrees d	IB				
-178.01 0.	170	Source Mismatch errors dominate Delta Gi	_		
-176.01 U.	145				
-172.01 0.	142	at the outside edges of the Smith Chart			
-170.01 0.	112				
-168.01 0.	163	Directivity errors dominate Delta Gt			
-166.01 0.	146	Directivity citors dominate Della Ot			
-164.01 0.	128	in the center of the Smith Chart			
-162.01 0.	158				
-160.00 0.	094		-		
Por Help, press F1		NUM			

Delta G_t Contours All Points Plot

Source Delta_Gt #contours = 1 @ 0.25dB/step <u>maxDeltaGt=0.9dB</u> A reasonable error.

GlobespanVirata

Swept Source Pull Freq = 5.3000 GHz ZLoad (Ohms): 50.00 + j 0.00

Delta_Gt max = 0.94 dB at -7.03 - j98.47 Ohms (Pin_avail=-10.00 dBm, 267/267 pts) 124 contours, 0.25 dB step (-30.00 to 0.75 dB) Specs: OFF

Swept Load Pull Freq = 5.3000 GHz ZSource (Ohms): 54.49 - j12.68

Delta_Gt max = 1.49 dB at -29.82 + j115.49 Ohms (Pin_avail=-10.00 dBm, 399/399 pts) 124 contours, 0.25 dB step (-29.50 to 1.25 dB) Specs: OFF

 Load Delta_Gt #contours = 8
 @ 0.25dB/step <u>maxDeltaGt=1.75dB</u> Undesirable Errors.

Delta G_t Contours: ANA Accuracy.

ANA characterization accuracy for S-parameters:

Typical Automatic Network Analyzer Accuarcy Comparision:						
Repeatability of thru calibration after 4~24hours and 2~5C change.						
5~6GHz	5~6GHz PNA 8510 8720 8753					
S11 -60 -55 -50 -45						
S21	0.001	0.005	0.007	0.01	dB	
The optimum frequency range is 1/2 to 2/3 of the maximum.						
Connectors are the major factor in ANA reconnect repeatability.						
Cables are a major factor in ANA accuaracy & stability.						
Temperature coefficient of S21 is about 0.001dB/degree.						
Hint: Cal with IF BW=10Hz, Measure with IF BW=100Hz & Avg=1,On.						

[3]

Delta G_t Contours: ANA Errors

Source Match(dB) vs. Peak to Peak Ripple(dB)

ANA verifications should be performed after calibration:

🕝 GlobespanVirata

- D = Directivity
- T_r = Reflection Frequency Response Tracking
- M_a = Source Match
- = Isolation
- M_I = Load Match
- T_t = Transmission Frequency Response Tracking
- 1) Use clean calibrated standards.
- 2) Confirm with a verification kit 10cm precision airline terminated with a short. Examine the ripple.

Delta G_t Contours: SMA vs. 3.5mm

• SMA vs. 3.5mm mated pair VSWR: Use 3.5mm or better connectors!

• Connectors affect the repeatability of VNA S-Parameters.

Туре	Freq.(GHz)	VSWR	Directivity	Zs Match	<u>Torque</u>	
Type N	18GHz	1.030+0.003f	42dB	32dB	12 in.lb.	
7.00mm	18GHz	1.003+0.002f	52dB	42dB	12 in.lb.	
SMA	18GHz	1.050+0.005f	3XdB	2XdB	5 in.lb.	
3.50mm	26.5GHz	1.010+0.004f	44dB	34dB	8 in.lb.	
2.92mm	40GHz	1.0X0+0.00Xf	40dB	34dB	8 in.lb.	
2.40mm	40GHz	1.0X0+0.00Xf	38dB	33dB	8 in.lb.	
1.85mm	60GHz	1.0X0+0.00Xf	36dB	29dB	8 in.lb.	
Connector repeatability should be better than 50dB						
If a slotless center connector is used, increase this by 8dB.						
Overtorquing and rotating are major connector wear problems.						
Clean connectors are imperative.						

Delta G_t Contours Sweep Plan Use

Delta G_t Contours All Points Sweep

Swept Load Pull Freq = 5.3000 GHz ZSource (Ohms): 50.32 - j 0.64

Load Delta_Gt #contours = 72 @ 0.25dB/step maxDe<u>ltaGt=0.8dB</u>

GlobespanVirata

Delta_Gt max = 0.81 dB at -6.95 - j20.32 Ohms (Pin_avail=-10.00 dBm, 287/287 pts) 124 contours, 0.25 dB step (-30.00 to 0.75 dB) Specs: OFF

Swept Source Pull Freq = 5.3000 GHz ZLoad (Ohms): 50.00 + j 0.00

Delta_Gt max = 0.94 dB at -7.03 - j98.47 Ohms (Pin_avail=-10.00 dBm, 267/267 pts) 124 contours, 0.25 dB step (-30.00 to 0.75 dB) Specs: OFF

 Source Delta_Gt #contours = 3
 @ 0.25dB/step <u>maxDeltaGt=0.9dB</u>

- Delta G_t verification tests should be run prior to any Load Pull.
- G_t is the most appropriate gain parameter since it contains both source and load matching terms.
- S-Parameter characterizations are a major source of uncertainty in the Delta G_t Load Pull system test.
 - Calibrations, connectors, and cables are very important.
 - Upgrading to new cables and connectors may be required.
- Contours are an easy way to view Delta G_t data.
 - Increase the number of contours to the 128 maximum
 - Select the Max or Min value to best display results.
 - Count the number of contours to get an estimate.
 - Select points at min & max area's to determine values.
- Re-calibrate & Re-characterize to reduce errors <0.5dB.

• References:

- 1. Guillermo Gonzalez, "Microwave Transistor Amplifiers: Analysis and Design", pp183 Prentice Hall 1997
- 2. "Measurement of Large Signal Device Input Impedance During Load Pull Applications", Maury Microwave Application Note 5C-029 [www.MauryMW.com]
- 3. Joel Dunsmore & Dennis Poulin, Personal Communications, Aug.~Sept. 2003.
- 4. "Verifying the Performance of Vector Network Analyzers", Maury Microwave Application Note 5C-026 [www.MauryMW.com]
- 5. "Improving SMA Tests with APC3.5 Hardware", Maury Microwave Application Note 5A-011 [www.MauryMW.com]
- 6. "Microwave Coaxial Connector Technology: A Continuing Evolution", Mario Maury Microwave Journal, 1990 State of the Art Reference pg. 39~59
- 7. Connectors: www.amphenolrf.com, www.agilent.com, www.us.anritsu.com