ANALYSIS OF PERFORMANCE FOR MEMORYLESS PREDISTORTION LINEARIZERS CONSIDERING POWER AMPLIFIER MEMORY EFFECTS

IEEE Topical Workshop on PA for Wireless Communications September, 2003 San Diego, CA

> Hyunchul Ku and J. Stevenson Kenney School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, GA

• This work is supported in part by Danam USA, San Jose, CA.

Outline

- Introduction
- New nonlinear PA model
- Model verification for real PA
- Pre-D improvement vs. Memory Effects
- Conclusions

Memory Effects in PA

 Memory Effects: The output depends on the <u>past</u> and current input signal

- RF frequency response in main signal path
- Non-constant impedance in DC bias circuits
- Self heating effects at the device level

Phenomena

Reasons

- Input & Output domain:
 - Dynamic AM/AM and AM/PM
- Frequency domain:

Georgia

The asymmetric IMD and spectral regrowth

Memory Effects in Pre-D

Memoryless PA (Sirenza 0.5W LPA)

PA with Memory (Ericsson 45W HPA)

Georgia Tech

* Result from J. S. Kenney, W. Woo, L. Ding, R. Raich, H. Ku, and G. T. Zhou, "The impact of memory effects on predistortion linearization of RF power amplifiers," *Proc. of the 8th Int. Symp. on Microwave and Optical Techn.*, Montreal, Canada, June 19-23 2001, pp. 189–193.

Research Issues

- How can we model a PA with memory effects accurately and efficiently?
- How can we quantify the memory effects in PA?
- What is the relationship between degradation of Pre-D and PA memory effects?

Outline

- Introduction
- New nonlinear PA model
- Model verification for real PA
- Pre-D improvement vs. Memory Effects
- Conclusions

PA Behavioral Modeling

Georgia Tech

8

PA with Memory Effects Model I

- Volterra Model

Georgia

$$y(t) = h_0 + \int_{-\infty}^{+\infty} h_1(\tau_1) x(t - \tau_1) d\tau_1 + \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h_2(\tau_1, \tau_2) x(t - \tau_1) x(t - \tau_2) d\tau_1 d\tau_2$$

+ \dots + \int_{-\infty}^{+\infty} \dots \dots \int_{-\infty}^{+\infty} h_p(\tau_1, \tau_2, \dots, \tau_p) x(t - \tau_1) x(t - \tau_2) \dots x(t - \tau_p) d\tau_1 d\tau_2 \dots d\tau_p + \dots d\tau_p + \dots d\tau_p + \dots d\tau_p + \dots x(t - \tau_1) x(t - \tau_2) \dots x(t - \tau_1) x(t - \tau_2) d\tau_1 d\tau_2 \dots d\tau_p + \dots d\tau_p + \dots d\tau_p + \dots x(t - \tau_1) x(t - \tau_2) d\tau_1 d\tau_2 \dots x(t - \tau_1) x(t - \tau_2) d\tau_1 d\tau_2 \dots x(t - \tau_1) x(t - \tau_2) d\tau_1 d\tau_2 \dots x(t - \tau_1) x(t - \tau_2) d\tau_1 d\tau_2 \dots x(t - \tau_1) x(t - \tau_2) d\tau_1 d\tau_2 \dots x(t - \tau_1) x(t - \tau_2) d\tau_1 d\tau_2 \dots x(t - \tau_1) x(t - \tau_2) d\tau_1 d\tau_2 \dots x(t - \tau_1) x(t - \tau_2) d\tau_1 d\tau_2 \dots x(t - \tau_1) x(t - \tau_2) d\tau_1 d\tau_2 \dots x(t - \tau_1) x(t - \tau_2) d\tau_1 d\tau_2 \dots x(t - \tau_1) x(t - \tau_2) d\tau_1 d\tau_2 \dots x(t - \tau_2) d\tau_1 d\ta

- Volterra Model Drawback

- <u>Complexity</u>: The complexity of the model increases immensely with the length of the system memory and the order of the nonlinearity
- <u>Difficulty in measuring the Volterra</u> <u>kernels</u>: Volterra kernels is not orthogonal, thus each kernels distributions cannot be separated from the total system response

Example: Kernel complexity

Kernel order	N^{P} (when $N=7$)
1	7
2	49
3	343
4	2401
10	282475249

PA with Memory Effects Model II

Two Box Models: One Filter + Memoryless Nonlinear (Wiener Model)

Three Box Models: One Filter + Memoryless Nonlinear + One Filter

- These models have been usually used to capture memory effects in PA modeling (H. B. Poza, A. A. Saleh, T. Vuong, M. S. Muha, and *et al.*)
- Drawbacks*

Georgia

lect

- These models cannot describe the change of shape in AM/AM and AM/PM function depending on tone spacing.
- These models cannot describe the interaction between the instantaneous tone

C. J. Clark, et al., "Power Amplifier Characterization Using a Two-Tone Measurement Technique," IEEE Trans. Microwave Theory Tech., vol. 50, no. 6, pp. 1590-1602, June, 2002 10

PA with Memory Effects Model III

Parallel Wiener model

Georgia

ec

Memory polynomial Model (MPM)

- These models are simple compared to general Volterra series and complex compared to two or three box model.
- These models compensate the drawbacks for Volterra models and two or three box models
- These models can quantify the memory effects in power amplifier and can
 apply to linearizer design

MPM with Sparse Delay Tap (MPMSD)

$$y[l] = \sum_{q=0}^{m} \sum_{k=1}^{n} a_{2k-1,q} |x[l-d_q^{(m)}]|^{2(k-1)} \cdot x[l-d_q^{(m)}]$$

Georgia

lec

- A unit delay tap delay in MPM is replaced with sparse delay taps
- Longer time constant memory effects may be modeled in parallel with short time constant effects using fewer parameters
- MPMSD can improve convergence rate of error compared to MPM

* H. Ku and J. S. Kenney, "Behavioral modeling of power amplifiers considering IMD and spectral regrowth asymmetries," in *IMS 2003*, Philadelphia, PA, 2003.

12

Application to PA Modeling

- Easy implementation using linear matrix equation
- Adaptive modeling by sliding window

Georgia

ec

• Iterative modeling by adding the branch using output data and error

Coefficients Extraction for MPMSD

• Coefficients Extraction: $\hat{a}^{(m)} = H^{(m)-1} \cdot Y$

Input complex envelope x

- *H*^(m): A matrix from PA input time data

Georgia

lec

 $H^{(m)} = \begin{bmatrix} H_0^{(m)} & \cdots & H_q^{(m)} & \cdots & H_m^{(m)} \end{bmatrix}$ M+1: The number of branches Nx(m+1) matrix

Output complex envelope y

- Y: Vector from PA output time data

 $\boldsymbol{Y} = \begin{bmatrix} y[l] & y[l+1] & \cdots & y[l+N-1] \end{bmatrix}^T$

N: length of sliding window Y

14

Nx1 vector

Delay Tap Extraction for MPMSD

Objective: To acquire delay tap set which minimize rms error

$$\boldsymbol{d}_{opt}^{(m)} = \left\{ \boldsymbol{d}^{(m)} \mid \min_{\boldsymbol{d}^{(m)}} \left(\left\| \boldsymbol{E}^{(m)} \right\|_{2}^{2} \right), \quad \boldsymbol{d}^{(m)} = \left\{ \boldsymbol{d}_{0}^{(m)} \cdots \boldsymbol{d}_{m}^{(m)} \right\} \right\}$$

where

$$\left\| \boldsymbol{E}^{(m)} \right\|_{2}^{2} = \boldsymbol{Y}^{*} \boldsymbol{Y} + \hat{\boldsymbol{a}}^{(m)}^{*} \boldsymbol{H}^{(m)}^{*} \boldsymbol{H}^{(m)} \hat{\boldsymbol{a}}^{(m)} - 2 \operatorname{Re} \left\{ \boldsymbol{Y}^{*} \boldsymbol{H}^{(m)} \hat{\boldsymbol{a}}^{(m)} \right\}$$

- It is difficult to derive optimal sparse delay taps analytically
- In this case, sequential identification can give simple method to derive delay tap function

New Memory Effect Figures of Merit

- Memory effect ratio (MER) MER = $||E^{(0)}||_2 / ||Y||_2$
 - Quantify the magnitude of memory effects
 - The value is 0 if memoryless case, and increases with increasing memory effects
- Memory effect modeling ratio (MEMR) MEMR_m = $1 \|\boldsymbol{E}^{(m)}\|_2 / \|\boldsymbol{E}^{(0)}\|_2$
 - Quantify the improvement in modeling memory effects in the suggested model.
 - This value is 0 when no memory effects are included, and is 1 when all of the memory effects are included.

Outline

- Introduction
- New nonlinear PA model
- Model verification for real PA
- Pre-D improvement vs. Memory Effects
- Conclusions

Power Amplifier Measurement

- Agilent VSA 89410 was used to capture time domain data
- Measured CDMA IS-95B timedomain input and output envelope signals for in-phase and quadrature

- DUT: One LDMOS PA (MRF9180) section of an Danam 880 MHz 50W HPA system
- Test signal: CDMA IS-95B Signal

Georgia

lec

Measurement Result

AM/AM response

0.8 0.7 Output Power [Scaled] 0 n 0. 0. 0.2 0.4 0.6 0.8 Input Power [Scaled] 0.8 0.2 1.2 1 0.7 0.6 Output Power [Scaled] 0.1 0.4 0.6 0.8 0.2 1.2 ο 1 1.4 Input Power [Scaled]

AM/PM response

IS-95B

Georgia Tech **Eight-tone**

Extracted Parameters & Results

			Branch Dolou		Coefficients			
	1.		Branch	Branch Delay	1 st order	3 rd order	MEMR	
Memoryless Model		0	0	0	1.1636+0.1841i	-0.3807-0.0795i	0	
		1	0	0	1.6660+0.2151i	-0.5600-0.1098i	0.55	
			1	1	-0.5144-0.0331i	0.1896+0.0458i		
		2	0	0	1.9702+0.1931i	-0.5934-0.1174i	0.59	
			1	1	-0.9606+0.0036i	0.2300+0.0560i		
			2	3	0.1591-0.0132i	-0.0112-0.0094i		
		3	0	0	1.9480+0.2380i	-0.5963-0.1253i	0.62	
			1	1	-0.9309-0.0597i	0.2347+0.0648i		
			2	3	0.1485+0.0082i	-0.0117-0.0108i		
			3	37	-0.0075+0.0043i	0.0198+0.0111i		
		➡ 4	0	0	1.9832 + 0.2129i	-0.6169 - 0.1214i	0.64	
			1	1	-0.9748 - 0.0244i	0.2553 + 0.0614i		
	ŗ		2	3	0.1630 - 0.0045i	-0.0211 - 0.0089i		
branches			3	37	-0.0106 - 0.0022i	0.0244 + 0.0142i		
			4	98	0.0065 - 0.0014i	0.0038 + 0.0144i		
		- Nonlin	earity order	: third orde	er (odd order only)			
		 Number of branches : 5 Sampling time: 101.73 nsec The number of samples for input and output measured data:2229 (0~0.2266msec) 						
		- The nu	mber of sam	nples for m	odeling: 200 (0.20345 used	~0.40588 usec)		
		- MER=	8.89%	-		-		
orgia Toch								
Tech								

Time Domain Results

	ML Model	MPMSD Model
RMS Error	0.041	0.016

Georgia Tech

Outline

- Introduction
- New nonlinear PA model
- Model verification for real PA
- Pre-D improvement vs. Memory Effects
- Conclusions

Pre-D Test Procedure

1. Design memoryless Pre-D based on memoryless model

2. Apply the extracted memoryless Pre-D to PA model with memory

3. The Performance of Pre-D is analyzed by sweeping MER in the MPMSD model

Georgia

ec

Pre-D Design I (p-th order inverse)

• Using Pre-D based on Polynomial Equation (p-th order inverse)

Georgia

ec

$$P_{3}(x) = (0.8384 - 0.1327i) \cdot x + (0.2007 - 0.0218i) \cdot |x|^{2} \cdot x$$
$$P_{5}(x) = (0.8384 - 0.1327i) \cdot x + (0.2007 - 0.0218i) \cdot |x|^{2} \cdot x$$
$$+ (0.1433 - 0.0132i) \cdot |x|^{4} \cdot x$$

Pre-D design II (LUT)

Georgia Tech • Using Pre-D based on LUT

$$P_{LT}(x) = [Gain_{LT}(P_{in}) \cdot \exp(j(Phase_{LT}(P_{in})))] \cdot x$$

• Gain LUT

Phase LUT

Response for PA with Pre-D

AM/AM Response

AM/PM Response

٠

ACPR Improvement

- For p-th order predistorter, the performance increase as order increases. But stability decrease as order increases
- PreD using LUT gives best performance: 20dB improvement in ACPR (IBO=5 dB)

ACPR Improvement Degradation

Tech

By changing MER value (@ 5dB IBO) in model (increasing weighting factor for the additional branches), compare the ACPR improvements

Analysis in Frequency Domain

Georgia

Tech

29

MER vs. Pre-D Improvement

- As MER increases, the improvement decrease :

 (20dB @ MER= 0%,
 14dB@ MER = 9%
 12.5dB @ MER=12%)
 Accurate Prediction for Pre
 - <u>Accurate Prediction for Pre-</u> <u>D improvement</u>
- Discrepancy between measured result and simulated result from MPMSD Model=> Because 64% of memory effects are captured in the model (36% are not captured)

Conclusions

- Memory polynomial model with sparsely delayed taps (MPMSD) is suggested to model PAs with memory effects such as asymmetric IMD and spectral regrowth: Simple method to implement
- Figure of merits introduced to quantify the amount of memory effects (MER) and quantify the modeling improvement of the suggested model (MEMR).
- Model was extracted for high power LDMOS PA and verified against measurements
- PreD degradation vs. MER is analyzed and simulated

Georgia

