Advanced Architectures for Predistortion Linearization of RF Power Amplifiers

J. Stevenson Kenney, Youngcheol Park, and Wangmyong Woo School of Electrical and Computer Engineering Georgia Institute of Technology

> Presented at The IEEE Topical Workshop on Power Amplifiers September 9, 2002 La Jolla, CA

Acknowledgement

This work was supported in part by Danam USA, San Jose, CA.

and by

- The Yamacraw Design Center, an economic development project funded by the State of Georgia.
- Thanks also to Sirenza Microdevices, and Ericsson USA for donating the power amplifiers used in this study.

Outline

- Introduction to Predistortion
- LUT Updates using Sub-sampling Receivers
- RF Envelope Predistortion
- Summary and Conclusions

Predistortion Concept

Correction Techniques for Cellular Base Stations

Correction Technologies	Correction Capability*	Correction Bandwidth	Relative Cost
Feed Forward	25-35 dB	> 100 MHz	High
Envelope Feedback	10-20 dB	< 5 MHz	Med
Analog Pre-Distortion	5-10 dB	> 25 MHz	Low
Adaptive Pre-D	10-20 dB	> 50 MHz	Med

* IMD Correction based on 8-Tone Continuous Random Phase

Predistortion Linearization

Predistortion Technology	Bandwidth	Relative IMD Correction	Comments
Open Loop Analog Pre-D	High	Low	Simple Implementation
Adaptive Analog Pre-D (Work function)	Moderate	Moderate	No I/Q stream required
Digital Baseband Pre-D	Moderate	Good	Depends on DSP computational capability

Baseband Pre-Distortion

Trends in Analog-to-Digital Converter Technology

Figure 1. A survey of analog-to-digital converters.

Adapted from R. H. Walden, *Performance Trends for Analog-to-Digital Converters*, IEEE Communications Magazine, February 1999, pp. 96 - 101.

J. Stevenson Kenney September 9, 2002

Pre-D Results with Low Power Amplifier (0.5W Class-AB GaAs HFET)

Without Pre-D

Disadvantages of Baseband Pre-D

Sampling Requirements

- DSP speed (power)
- Digital I/Q input stream required
- LUT update must be performed in background

Outline

- Introduction to Predistortion
 LUT Updates using Sub-sampling Receivers
- RF Envelope Predistortion
- Summary and Conclusions

J. Stevenson Kenney September 9, 2002

Sampling in Predistorters

 A predistorter samples signals at the input and output of a power amplifier to identify its AM-AM, AM-PM characteristics.

Input Nyquist Rate

- Input Nyquist rate is when
 f_{IF}+BW/2=f_s-f_{IF} BW/2
- Again, this is equivalent to the second figure in terms of aliasing
- Therefore, this is 33% of the output Nyquist Rate, considering 3rd order IMD.

Input Nyquist Rate

 The original signal can be reconstructed from the sampled signal if the signal is sampled so that its spectrum is not overlapped in frequency domain.

$$x(t) = \sum_{k=-\infty}^{\infty} x(kT_s) \frac{\sin[\mathbf{p}(t-kT_s)/T_s]}{\mathbf{p}(t-kT_s)/T_s} \quad \text{where} \quad \frac{1}{T_s} = F_s \ge 2F_o$$

 Input Nyquist rate is the sampling frequency when the highest frequency of the input signal coincides with the lowest frequency of the image signal.

Output Nyquist Rate

With predistortion systems, the analog-to-digital conversion at the output of a PA is traditionally done with 'above' Output-Nyquist rate in order to avoid the aliasing at the output spectrum.

Sub-sampling

Sampling Requirements for Nonlinear System Identification

- The goal of the sampling system is the pre-D system is not to reconstruct signals, but to identify the nonlinear distortion.
- Therefore, it is not necessary to do Nyquist rate sampling.
- According to the Generalized Sampling Theorem^{*}, a nonlinear system may be accurately identified if the output signal is sampled at the *input* Nyquist rate.

*John Tsimbinos, and Kenneth V. Lever, "Sampling Frequency Requirements for Identification and Compensation of Nonlinear Systems," in Proc. ICASSP, vol. III, 1994, pp. 513-516.

Basic Operation of the Generalized Sampling Theorem

Sub-Sampling Architecture ADS Simulation

J. Stevenson Kenney September 9, 2002

Sub-Sampling Architecture ADS Simulations (cont.)

Figure 1: Simulated AM-AM Characteristic when f_s = 10 MHz (includes 3rd order distortions).

Tech

Sub-sampling Architecture Test Bed

J. Stevenson Kenney September 9, 2002

Measurement Results

Figure 6: Measured AM-AM Characteristic of SHF-0189 when $f_s = 10$ MHz (includes 3rd order distortions).

Figure 7: Measured AM-AM Characteristic of SHF-0189 when $f_s =$ 5.3 MHz (67% of output spectrum is overlapped).

Indirect Learning Predistortion Architecture

calculated by method of Least Squares

Predistortion Results

Overlapped Spectrum of Output Signal [%]

ACPR Improvement Using Subsampling Predistortion Architecture (Negative values in x-axis indicates sampling above Nyquist rate of the output signal)

Predistortion Results (cont.) Sirenza SHF-0589: 2W GaAs HFET PA

Figure: ACPR@885kHz measurements over P_{in} variations.

Predistortion Results (cont.) Motorola MRF-9180 170W Si LDMOS

Impact of Memory Effects

"Memoryless" PA

J. Stevenson Kenney September 9, 2002

27

Impact of Memory Effects (cont.)

28

Outline

- Introduction to Predistortion
 LUT Updates using Sub-sampling
 - Receivers
- RF Envelope Predistortion
- Summary and Conclusions

J. Stevenson Kenney September 9, 2002

RF Envelope Predistortion

- Predistortion is performed directly on the modulated RF carrier using a high-speed vector modulator
- VMOD is driven by a look-up table (LUT) that is indexed by the instantaneous input power level
- Kusunoki, et al., demonstrated 6-7 dB ACPR improvement without adaptive feedback*

*S.Kusunoki, et al., "Power Amplifier Module with Digital Adaptive Predistortion for Cellular Phone, 2002 IEEE MTT-S Int. Microwave *Symp. Dig.*, pp. 765-8, Seattle, WA, June 4-6, 2002.

J. Stevenson Kennev September 9, 2002

Adaptive RF Envelope Pre-Distortion Test Bed

FPGA LUT Implementation

(Xilinx Vertex-II)

RF Envelope Pre-Distortion ADS Simulations

RF Envelope Pre-D Test Bed

Signal Integrity ADC-LUT-DAC Path

Signal Integrity ADC-LUT-DAC Path (cont.)

Outline

- Introduction to Predistortion
- LUT Updates using Sub-sampling Receivers
- RF Envelope Predistortion
- Summary and Conclusions

Summary and Conclusions

- Sub-sampling architecture developed to reduce sampling and processing requirements
 - Sample rate \geq 2 x BW of input signal
 - Memory effects may increase this
- RF Envelope pre-D is an alternative to baseband digital pre-D
 - No digital I/Q stream required
 - Lower power, high BW

