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Predistortion Concept

PA response after 
predistortion algorithm

PA 
Response

Input operating 
range without Pre-D

Input operating 
range with Pre-D

Average 
power

Peak 
power

PAPR

This back-off value is 
determined to give no 

significant nonlinear region 
for peak input power

This back-off value is (Ideal 
limiter saturation point-PAPR 

of input signal)



5

J. Stevenson Kenney

September 9, 2002

C S

T

Correction Techniques for Cellular Base StationsCorrection Techniques for Cellular Base Stations

Correction 
Technologies 

Correction 
Capability* 

Correction 
Bandwidth 

Relative 
Cost 

Feed Forward 25-35 dB > 100 MHz High 

Envelope Feedback 10-20 dB < 5 MHz Med 

Analog Pre-Distortion 5-10 dB > 25 MHz Low 

Adaptive Pre-D 10-20 dB > 50 MHz Med 

Correction 
Technologies 

Correction 
Capability* 

Correction 
Bandwidth 

Relative 
Cost 

Feed Forward 25-35 dB > 100 MHz High 

Envelope Feedback 10-20 dB < 5 MHz Med 

Analog Pre-Distortion 5-10 dB > 25 MHz Low 

Adaptive Pre-D 10-20 dB > 50 MHz Med 

* IMD Correction based on 8-Tone Continuous Random Phase
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Predistortion Linearization

Depends on DSP 
computational 

capability

GoodModerateDigital Baseband 
Pre-D

No I/Q stream
required

ModerateModerateAdaptive Analog 
Pre-D

(Work function)

Simple 
Implementation

LowHighOpen Loop 
Analog Pre-D

CommentsRelative IMD 
Correction

BandwidthPredistortion
Technology
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Baseband Pre-DistortionBaseband Pre-Distortion

• Adaptive Filter to Minimize MSE
• ADC/DAC Requirements:

– 20 MHz BW  ⇒ 100 MHz with 5th order IMD
– 3X over sample ⇒ 300 Msps (on both I and Q)

• DSP Speed: >6⋅108 MAC/sec
– 0.18 µm CMOS: ~1.5 nW/MAC
– ⇒ ~1W DC power
– LUT update must also be performed

• Adaptive Filter to Minimize MSE
• ADC/DAC Requirements:

– 20 MHz BW  ⇒ 100 MHz with 5th order IMD
– 3X over sample ⇒ 300 Msps (on both I and Q)

• DSP Speed: >6⋅108 MAC/sec
– 0.18 µm CMOS: ~1.5 nW/MAC
– ⇒ ~1W DC power
– LUT update must also be performed

DSP 
Pre-D

PAI/Q 
Stream 
Input

Σ
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Adapted from R. H. Walden, Performance Trends for Analog-to-Digital Converters, IEEE 
Communications Magazine, February 1999, pp. 96 - 101.

Trends in Analog-to-Digital 
Converter Technology
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Pre-D Results with Low Power Amplifier 
(0.5W Class-AB GaAs HFET)

Without Pre-D With Pre-D
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Disadvantages of Baseband Pre-D

• Sampling Requirements
• DSP speed (power)
• Digital I/Q input stream required
• LUT update must be performed in 

background
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Outline

• Introduction to Predistortion
• LUT Updates using Sub-sampling 

Receivers
• RF Envelope Predistortion
• Summary and Conclusions
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Sampling in Predistorters

• A predistorter samples signals at the input and output of a power 
amplifier to identify its AM-AM, AM-PM characteristics.

PA

RF
Downconverter

A/D Converter

Sample & Hold 
Circuit

DSP

RF
Downconverter

A/D Converter

Sample & Hold 
Circuit

PredistorterInput 
Signal

ff
Output 
Signal
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Input Nyquist Rate

• Input Nyquist rate is when
fIF +BW/2=fs-fIF – BW/2

• Again, this is equivalent to 
the second figure in terms of 
aliasing

• Therefore, this is 33% of the 
output Nyquist Rate, 
considering 3rd order IMD.

0 fs

0 fs’

fIF
fs- fIF
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Input Nyquist Rate

• The original signal can be reconstructed from the sampled signal if 
the signal is sampled so that its spectrum is not overlapped in 
frequency domain.
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• Input Nyquist rate is the sampling frequency when the highest 
frequency of the input signal coincides with the lowest frequency of 
the image signal.

0 fs
fIF fs- fIF
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Output Nyquist Rate

• With predistortion systems, the analog-to-digital conversion at 
the output of a PA is traditionally done with ‘above’ Output-
Nyquist rate in order to avoid the aliasing at the output 
spectrum.

0
fsfIFfL fH fs- fIF fH,i

= fL,i
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Sub-sampling

0 fs=10fIF=2fL fH
=3.84

8

fL,i=6.2

fH,i

fs=10MHz

0 fs
=5.01fIF=2

fL

fL,i=1.17

fH,i

fs=5.01MHz
(67% overlapped)

fs

fIF=2fL fH

BPF

fs<3.55
(More than 133% 
overlapped)



17

J. Stevenson Kenney

September 9, 2002

C S

T

Sampling Requirements for Nonlinear 
System Identification

• The goal of the sampling system is the pre-D 
system is not to reconstruct signals, but to 
identify the nonlinear distortion.

• Therefore, it is not necessary to do Nyquist
rate sampling.

• According to the Generalized Sampling 
Theorem*, a nonlinear system may be 
accurately identified if the output signal is 
sampled at the input Nyquist rate.

*John Tsimbinos, and Kenneth V. Lever, “Sampling Frequency Requirements for 
Identification and Compensation of Nonlinear Systems,” in Proc. ICASSP, vol. 
III, 1994, pp. 513-516.
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Basic Operation of the 
Generalized Sampling Theorem

Nonlinear
Mapping

g(⋅) = f--1 (⋅)

Sampler
tk=kTs

x(t)y(t) y(tk) g(y(tk)) LPF

Nonlinear
Mapping

f- (⋅)

x(t) y(t) = f(x(t))
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Sub-Sampling Architecture
ADS Simulation
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Sub-Sampling Architecture
ADS Simulations (cont.)
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Figure 1: Simulated AM-AM Characteristic when fs
= 10 MHz (includes 3rd order distortions).

Figure 2: Frequency Spectrum when fs = 10 MHz 
(includes 3rd order distortions).

Figure 3: Simulated AM-AM Characteristic when fs = 5 
MHz (70% of output spectrum is overlapped).

Figure 4: Frequency Spectrum  when fs = 5 MHz 
(70% of output spectrum is overlapped).
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Sub-sampling Architecture Test Bed
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Measurement Results
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Figure 6: Measured AM-AM Characteristic 
of SHF-0189 when fs = 10 MHz (includes 
3rd order distortions).

Figure 7: Measured AM-AM 
Characteristic of SHF-0189 when fs = 
5.3 MHz (67% of output spectrum is 
overlapped).
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Indirect Learning 
Predistortion Architecture
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Predistortion Results
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Architecture (Negative values in x-axis indicates sampling 
above Nyquist rate of the output signal)
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Predistortion Results (cont.)
Sirenza SHF-0589: 2W GaAs HFET PA

Figure: ACPR@885kHz measurements over Pin variations.
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Predistortion Results (cont.)
Motorola MRF-9180 170W Si LDMOS 
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Impact of Memory Effects

“Memoryless” PA PA with Strong 
Memory Effects
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Impact of Memory Effects (cont.)
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Outline

• Introduction to Predistortion
• LUT Updates using Sub-sampling 

Receivers
• RF Envelope Predistortion
• Summary and Conclusions
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RF Envelope Predistortion

• Predistortion is performed directly on the 
modulated RF carrier using a high-speed 
vector modulator

• VMOD is driven by a look-up table (LUT) that 
is indexed by the instantaneous input power 
level

• Kusunoki, et al., demonstrated 6-7 dB ACPR 
improvement without adaptive feedback*

*S.Kusunoki, et al., “Power Amplifier Module with Digital Adaptive 
Predistortion for Cellular Phone, 2002 IEEE MTT-S Int. Microwave 
Symp. Dig., pp. 765-8, Seattle, WA, June 4-6, 2002.
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Adaptive RF Envelope 
Pre-Distortion Test Bed
Adaptive RF Envelope 
Pre-Distortion Test Bed
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FPGA LUT Implementation
(Xilinx Vertex-II) 

§ LVDS: Low Voltage Differential Signaling
§ UART: Universal Asynchronous Receiver Transmitter
§ DCM: Digital Clock Manager
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RF Envelope Pre-Distortion
ADS Simulations
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RF Envelope Pre-D Test Bed

LUTτ
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Signal Integrity ADC-LUT-DAC Path

10MHz Sine Signal RS-232

10bit/
100MHz

12bit/
100MHz

ADC EV Board
[AD9214]
(105MHz)

LUT Board

Agilent 1692A 68ch LA

DAC EV Board
[AD9765]
(125MHz)

PC

I

Q

TDS 3054 DPO
(500MHz, 5GS/s)

Agilent 33120A
F/AWG (15MHz)

Testbed diagram

LUTin

LUTout

Linear function 
loaded into LUT
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Signal Integrity ADC-LUT-DAC Path (cont.)

(3-a) 10MHz input, No filtering

(3-b) 10MHz input, Filtering (fc=20MHz)

(3-c) Glitch due to the crosstalk of data lines and overflow
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• Introduction to Predistortion
• LUT Updates using Sub-sampling 

Receivers
• RF Envelope Predistortion
• Summary and Conclusions
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Summary and Conclusions

• Sub-sampling architecture developed to 
reduce sampling and processing 
requirements
– Sample rate ≥ 2 x BW of input signal
– Memory effects may increase this

• RF Envelope pre-D is an alternative to 
baseband digital pre-D
– No digital I/Q stream required
– Lower power, high BW


