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Agenda

• Introduction
• Phemt modeling issues
• Empirical model vs table-based model; Charge model vs ‘no-charge’ model
• Class-inverse-F operation of power PHEMTs
• Models of III-V-based HBTs

• Modofied GP model
• VBIC model
• Modified VBIC model
• Thermal coupling model

• Small-signal and large-signal HBT model verification
• HBT modeling application to power amplifier



Challenges of modeling for power amplifier designs

• PHEMT/HBTs feature higher efficiency, high frequency and good linearity and are being 
widely used in power amplifiers for wireless communications

• Commercial models are difficult to predict consistent small-signal and large-signal 
power performance including linearity.                          

The requirements for a good model are:
• Must be capable of  reproducing three-terminal dc IV curves over wide range and 

possible IV collapses
• Must be capable of fitting measured S-parameters over a wide bias range
• Must  accurately predict power, efficiency and linearity 
• Must be able to predict load-pull behavior
• Must be scaleable to large-size used in power amplifiers
• Good convergence



PHEMT modeling issue: Self-heating

• Positive RF Gds but Negative DC Gdso at Higher Power Dissipation Region

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Vds (V)

Id
 A

)



PHEMT modeling issue: I-V dispersion

• - DC-IV Does Not Mean Equal to RF-IV
• -RF IVs That Fit RF Gm and RF Gds Differ From Each Other
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PHEMT modeling issue: Charge Conservation?

• 2d-charge Qg Can Be Integrated From Extracted (Based on Measurement Data)
Cgs(vgs,vgd) and Cgd(vgs,vgd) and Should Be Path-independent

Charge Conservation or Path Independence 
Rule Requires:
Qg=    ƒ(Cgs dvgs + Cgd dVgd )

∂ Cgs/ ∂ Vgd= ∂ Cgd/ ∂ Vgs

For Small Size Devices and No Significant Dispersion, 
Path Independence Does Hold. In general, it does not 
hold, because of improper equivalent circuit



PHEMT modeling issue: consistence and others

• A derived small-signal model from the large-signal model must be 
consistent with small-signal models over a wide range of biases

• 2D QV Functions in Large-signal Model 
Introduce Additional Trans-capacitances 
that do not exist in small-signal 
models

• Be continuous up to at least third 
derivatives of IV and QV curves

• Accurate gate current model including 
leakage and breakdown

Qgd(Vgs,Vgd)

Qgs(Vgs,Vgd)



Empirical model verses Table-based model

• Both models use simple �-shaped intrinsic equivalent circuit
• Both models use IV and QV characteristics and assume path-independence
• Both models use simple linear or nonlinear RC-type circuit on drain side to 

account for low-frequency dispersion
• Empirical models have advantages of approximate mapping onto device 

physical structure, large-dynamic range independent of measurement range. 
Their disadvantage is accuracy.

• Table-based models  have advantages of least-parameter-extraction, 
technology-independence, accuracy but the disadvantages are: slower 
convergence, limited validity in its measurement range in extraction.



Dispersion model of PHEMTs

• Instead of Using RC Branch in Drain Port, Alpha Model Uses a Feed-back and Feed-
forward Circuit to Modify the RF Gds and RF Gm.

• Self-heating Effects Are Modeled by a Sub-thermal-circuit and a Coefficient of Id 
Modification
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‘No-Charge’ model
• Use Capacitive Current 

Sources to Replace Charge 
Sources

• Create a Virtual Node 
(Voltages dv_dt) That Are 
Proportional to Time-
derivative of Vgs or Vgd.  
The Capacitance Current, 
C(Vs)*dV_dt , Is the 
Nonlinear Function of
Vgs,vgd and dV_dt

igd

igs
ids

Cgd dVgd/dt

Cgs dVgs/dt

+
-

V

CSVS 
(1/C)

C dv/dt



Charge model verses ‘Non-charge’ model

• No extra trans-capacitances are involved
• Complete and one-by-one-correspondence consistence with small-

signal models over all bias-points measured
• Care must be taken to avoid average component of capacitive 

currents. Use CR broke circuit for each current 
• Charge model is still better in convergence.
• Both models can be table-based or empirical.



Application: 2-tone Load-pull Simulation
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Application: Waveform at Inverse-F and Class-F Operation
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Application: load-line of ideal Inverse-F and Class-F Operation

High PAE Requirement:  - Id � 0 when Vd swings, Vd minimized , when Id swings

- fast transit for Id*Vd � 0 (broken line)

Class F: visit more time on resistive loss area than clss inverse-F
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HBT modeling

• Most hand-set PA’s are using HBTs
• The advantages over PHEMTs: unipolar DC supply, 

uniformity and high yield, linearity. Caution must be taken 
on thermal management

• Commercial and non-conmercial models
- Commercial models: GP, � VBIC, Mextram, Hicum
- Non-commercial models: � Modified-GP, � Modified-VBIC 
or others



VBIC model and features

• �Self-heating
• � Separation of the 

transfer current and base 
current

• External BE diode
• Parasitic PNP
• Early effect on Tf
• Quasi-saturation
• � Comprehensive 

Temperature-dependent 
parameters



Modified GP model and features
• �major Self-heating effects including nonlinear terms
• � Separation of the transfer current and base current
• � Comprehensive Temperature-dependent parameters
• � Additional terminal for thermal coupling simulation
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Tf and Cbc characteristics that 
commercial models can not fit
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Modified VBIC model and features
• �Self-heating
• � accurate Tf model to 

account for ft drop at higher 
current (Kirk Effect)

• � Vbc & Ic dependent Cbc 
due to mobile-charge 
modulation and Kirk Effect

• � Implemented with SDD in 
ADS
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Ic-Vc and Vb-Vc curves at constant Ib modeled vs 
measured
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Modified VBIC fits ft at higher 
current

Ft as function of Vcb & Ic  Vcb=0V Solid line: 
Modified VBIC  Broken line: VBIC model
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IV collapse modeled vs measured

Ae=960 um2  Ib=0.4mA to 4.4 mA step 0.4mA

simulated measured
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Power performance Modeled vs Measured

m1
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Harmonics performance Modeled vs Measured

V27 H1503-901 60um^2  Vc=3.5V  Ic=7mA
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IM3 & IM5 performance Modeled vs Measured

V27 H1503-901 60um^2  Vc=3.5V  Ic=7mA
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Linearity improves for punch-through  structure
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Pout load-pull, Modeled vs Measured

V27 H1503-901 720um^2  Vc=3.2V  Ic=37mA 
Pin=0dBm Gamm(2)=0.52<-117
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PAE load-pull, Modeled vs Measured

V27 H1503-901 720um^2  Vc=3.2V  Ic=37mA 
Pin=0dBm Gamm(2)=0.52<-117

PAE_step=5

range1 : >max-6

range2 � : max-15

range3 � : max-25

range4 � : max-35

range5 � : max-45

range6◇:max-55

Max=61.6indep(PAE_contours_p) (0.000 to 49.000)

P
A

E
_c

on
to

ur
s_

p

 (0.000 to 126.000)

ra
ng

e1
ra

ng
e2

ra
ng

e3
ra

ng
e4

ra
ng

e5
ra

ng
e6

ra
ng

e7

61.67

  Maximum 
Power-Added
Efficiency, %



IM3 load-pull, Modeled vs Measured

V27 H1503-901 720um^2  Vc=3.2V  Ic=37mA
Pin=0dBm Gamm(2)=0.52<-117
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PAE load-pull for 2nd harmonic, Modeled vs Measured

V27 H1503-901 720um^2  Vc=3.2V  Ic=37mA
Pin=3dBm Gamm(1)=0.558<111
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Pout load-pull for 2nd harmonic, Modeled vs Measured

V27 H1503-901 720um^2  Vc=3.2V  Ic=37mA
Pin=3dBm Gamm(1)=0.558<111

For Pout inverse-F is 
better than class F!
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IM3 load-pull for 2nd harmonic, Modeled vs Measured

V27 H1503-901 720um^2  Vc=3.2V  Ic=37mA
Pin=3dBm Gamm(1)=0.558<111

For  IM3 inverse-F is 
also better than class F!
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Conclusion

• The problems with conventional large-signal PHEMT models are addressed that 
include: dispersion, ‘non-charge-conservation’ originated from use of simple 
equivalent circuit, etc

• Dispersion and ‘no-charge’ models are presented that overcome the difficulties
• The issues in HBT modeling in terms of mobile charge-modulation and Kirk 

effects are addressed and modified MP and VBIC models are presented
• The models are verified with comprehensive load-pull results
• Class inverse-F with 2nd harmonic tuned at high impedance is recommended for 

PHEMT PA design due to its higher PAE over class-F and is likely useful due to 
its better linearity for HBT power amplifiers.
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