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* Introduction

* Phemt modeling issues

* Empirical model vs table-based model; Charge model vs ‘no-charge’ model
* Class-inverse-F operation of power PHEMTs

* Models of lll-V-based HBTs
*  Modofied GP model
« VBIC model
« Modified VBIC model
*Thermal coupling model

 Small-signal and large-signal HBT model verification
« HBT modeling application to power amplifier
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Challenges of modeling for power amg

- PHEMT/HBTS feature higher efficiency, high frequency and good linearity and are being
widely used in power amplifiers for wireless communications

 Commercial models are difficult to predict consistent small-signal and large-signal
power performance including linearity.

The requirements for a good model are:

* Must be capable of reproducing three-terminal dc IV curves over wide range and
possible IV collapses

* Must be capable of fitting measured S-parameters over a wide bias range
 Must accurately predict power, efficiency and linearity

* Must be able to predict load-pull behavior

* Must be scaleable to large-size used in power amplifiers

* Good convergence
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PHEMT modeling issue: Self-heating

* Positive RF Gds but Negative DC Gdso at Higher Power Dissipation Region
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PHEMT modeling issue: |-V dispersion

* - DC-IV Does Not Mean Equal to RF-IV
« -RF IVs That Fit RF Gm and RF Gds Differ From Each Other
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PHEMT modeling issue: Charge Conse

» 2d-charge Qg Can Be Integrated From Extracted (Based on Measurement Data)
Cgs(vgs,vgd) and Cgd(vgs,vgd) and Should Be Path-independent

Charge Conservation or Path Independence
Rule Requires:
Qg= f (Cgs dvgs t ng dvgd )

8Cy dV,= 8Cpf 3V,

For Small Size Devices and No Significant Dispersion,
Path Independence Does Hold. In general, it does not
hold, because of improper equivalent circuit
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PHEMT modeling issue: consistence

* A derived small-signal model from the large-signal model must be
consistent with small-signal models over a wide range of biases
« 2D QV Functions in Large-signal Model
Introduce Additional Trans-capacitances
that do not exist in small-signal Qgd(Vgs,Vgd)

models @

* Be continuous up to at least third
derivatives of IV and QV curves

» Accurate gate current model including
leakage and breakdown l

Qgs(Vgs,Vgd)
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Empirical model verses Table-based

* Both models use simple I'T-shaped intrinsic equivalent circuit
* Both models use IV and QV characteristics and assume path-independence

* Both models use simple linear or nonlinear RC-type circuit on drain side to
account for low-frequency dispersion

* Empirical models have advantages of approximate mapping onto device
physical structure, large-dynamic range independent of measurement range.
Their disadvantage is accuracy.

* Table-based models have advantages of least-parameter-extraction,
technology-independence, accuracy but the disadvantages are: slower
convergence, limited validity in its measurement range in extraction.
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Dispersion model of PHEMTs

* Instead of Using RC Branch in Drain Port, Alpha Model Uses a Feed-back and Feed-
forward Circuit to Modify the RF Gds and RF Gm.

* Self-heating Effects Are Modeled by a Sub-thermal-circuit and a Coefficient of Id

Modification
Feed-

; 4 - Self-heating
Owar 14 (1exp(ect Veh) " Induced Current
/ -exp(-¢
e E Qed Id(Vgt Vds) , Ld e
"W"/ﬁ'ﬂ"?ﬁ ow CJ)\_/
cd
VCVS\ Vs ‘ — Gm=+GmoCftb
_\i _ " Tf\__/ |/
gt\ | Gds=+GdsoCbk
Cfb Vrf |
VCVSQ
Feedback Thermal

Vth
S Ls RS
Sub-circuit
Ith=Vds Id Cth )\$(_/
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‘No-Charge’ model

* Use Capacitive Curren
Sources to Replace Charge
Sources

* Create a Virtual Node
(Voltages dv_dt) That Are
Proportional to Time-
derivative of VVgs or Vgd.
The Capacitance Current,
C(Vs)*dV_dt, Is the
Nonlinear Function of
Vgs,vgd and dV_dt

_ 50

Cgs dVgs/dt
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Charge model verses ‘Non-charge’ mot

* No extra trans-capacitances are involved

» Complete and one-by-one-correspondence consistence with small-
signal models over all bias-points measured

» Care must be taken to avoid average component of capacitive
currents. Use CR broke circuit for each current

» Charge model is still better in convergence.
» Both models can be table-based or empirical.
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Application: 2-tone Load-pull Simulatio

* The Results Are Verified by Comparing the Measured at Several Points

Gain TMD & FMD
- Gain Unchanged
but TMD )
Improved by »»
Pp 37
A 8dB 4
te X
¢ @ \// oD
+
'
indep(PAE_contours_p) (0.000 to 6.000)
indep(Pdel_contours_p) (0.000 to 57.000) indep(ThirdOrdIMD_contours_p) (0.000 to 31.000)
indep(FifthOrdIMD _ contoursl,vr) (0.000 to 27.000)
Minimum inimum
m1 3rd-Order S5th-Order
indep(m1)=6 C0.728 / 14171 IMD, dBc IMD, dBc
PAE_contours_p=0.7 41.714 _ -
level=3.252045, number=1 83.437 100.154
impedance = 70 * (0.176 +j0.338
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Application: Waveform at Inverse-F and Class:

Class Inverse-F (PAE 80%) Class F (PAE 69%)

2"d: open; 37 short 2nd: short; 379: open
12 P 300 250 P
+ 250
+200
| 150 -~
q
100 £
L)
+50
+0
| ' +-50
9 200 400 600 800 1000 120Q1 00
Time (ps) Phase (rad) at 0.938GHz
Symbol: Measured Line: Modeled );(_/
Vds=3.2 V Vg=-0.88 V (Inverse F), Vg =-1.1 V (Class-F), Total Wg = 2 mm
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Application: load-line of ideal Inverse-F and Class

High PAE Requirement: -1d ~ 0 when Vd swings, Vd minimized , whén Id swings
- fast transit for Id*Vd = 0 (broken line)

Class F: visit more time on resistive loss area than clss inverse-F
1.2

1.0 1

0.8 - Class F

0.6 -

Ids (A)

0.4 1 Class IF
0.2 | ppoint o< "~ ~ _ Y

0.0

Vds (V) )\5(-/
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HBT modeling

* Most hand-set PA’s are using HBTs

* The advantages over PHEMTSs: unipolar DC supply,
uniformity and high yield, linearity. Caution must be taken
on thermal management

« Commercial and non-conmercial models
- Commercial models: GP, v VBIC, Mextram, Hicum

- Non-commercial models: < Modified-GP, v Modified-VBIC
or others
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VBIC model and features

. . ke R“‘__cm XF:m XF2
- JSelf-heating S T T{ o
* «/ Separation of the S
transfer current and base E | .
current iy - -
* External BE diode Jr=
L C
» Parasitic PNP —q
* Early effect on Tf T % % * 1
- Quasi-saturation B Tl Sye
. - fnaxn Jbexi Bi loen  |lbe
+ J Comprehensive S F | 9HE ¥ ¥
Temperature-dependent - Ei |j
parameters Lo 1.
i a
SKYWORKS

BREAKTHROUGH SIMPLICITY



Modified GP model and features

* /major Self-heating effects including nonlinear terms
* «/ Separation of the transfer current and base current
* / Comprehensive Temperature-dependent parameters ().
- < Additional terminal for thermal coupling simulation

Rcx

Cdbc

Dbce C ch1 Cjbc
Icc-lee
O— % ®

CSRCZ Dbei Cjbe Cdbe
B Rb + ) [ Dbep

O-— Re

CPSRC%Rim : ¢ ;5(/
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Tf and Cbhc characteristics that

commercial models can not fit

Ft as function of Vcb & Ic

Cbc as finction of Vbe & Ic
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Vcb=-0.8, & -0.5t04 Vstep 0.5V Vbc=0.51t03.5 Vstep 0.5V
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Modified VBIC model and features

* JSelf-heating
 «/ accurate Tf model to gll

account for ft drop at higher - o ot
current (Kirk Effect) % "
=0
* J/'Vbc & Ic dependent Chc vevs = VAR
due to mobile-charge - (2
modulation and Kirk Effect R;W:I
* < Implemented with SDD in
ADS O—W——rrm, W
B RB LB ~ -l,_,1 :I RCX
O—uas+—W ' ! L
: LE RE _l_ :'=- %Rth
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lc-Vc¢ and Vb-Vc¢ curves at constant Ib

measured

Ae=56um”2 Ic-Vc Vb-Vc
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Modified VBIC fits ft at higher

current

Ft as function of Vcb & Ic Veb=0V Solid line:
Modified VBIC Broken line: VBIC model
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ft-model
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cutoff frequency (Hz)
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IV collapse modeled vs measured

Ae=960 um?2 Ib=0.4mA to 4.4 mA step 0.4mA

simulated meaanred
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Power performance Modeled vs Measuree

V27 H1503-901 720um”2 Vc=3.2V Ic=7.54mA

Pin=-19.000
Gain=18.283

25 60

var("PSweep..Pout")
var("Psweep..Gain")
Pout
Gain

'5\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\ 0
-20 -15 -10 -5 0 5 10

Pin

avd
Aouaioiyg-deamsd

2
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Harmonics performance Modeled vs Mea

V27 H1503-901 60um”2 Vc=3.5V Ic=7mA

Ve=3.5V Vb=1357V

T@ [c=6.98 mA
%LNLElm Rbext=6000hm
093292 Source: f1: 0.78./26.7
%‘Z"D':>|>|>m‘_ : f1: 0. .
§'§E33: - F2 06 468
oERER F3:0.17 £168
ﬁf’fﬁ T
SS% 7 Load: f1 0.32 £26.7

-&) T 1T ‘ T 171 ‘ T 171 ‘ T 11 ‘ T 11 ‘ T 11 F2: 0.77 4-88.4

% D B D B 0 5
F3:0.67 £-137.5
Fn
An meas
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IM3 & IMS performance Modeled vs Meas

V27 H1503-901 60um”2 Vc=3.5V Ic=7mA

Ve=3.5V Vb=1357V

[c=6.98 mA
asl Rbext=6000hm
g5 BIEEe Source: f1: 0.78.226.7
22222500550
SEEREECIE 22288 F2:0.6 £6.8
2X%%% e o0les
=355389°8°¢ F3:0.17 £168
2222 :
Load: f1 0.32 /26.7
F2:0.77 £-88.4
Pin F3:0.67 £-137.5

Symbol:measured, solid line:new model, broken lin: VBIC SKYWORKS
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Linearity improves for punch-through s
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Pout load-pull, Modeled vs Measured

V27 H1503-901 720um”™2 Vc¢=3.2V Ic=37mA
Pin=0dBm Gamm(2)=0.52<-117

Maximum

Power

Delivered, Pout step=1
dBm -

21.78 Range8[] >max-1

Range9 O: max-2

Rangel10 x: max-3

T T«

Rangell V: max-5

[ SN S Gui G

range8
Pdel_contours_p

Rangel2 A: max-7
Range13 <>:max-10
Rangel3 [ :max-15

Max=21.4 X
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PAE load-pull, Modeled vs Measured

V27 H1503-901 720um”™2 Vc¢=3.2V Ic=37mA
Pin=0dBm Gamm(2)=0.52<-117

Maximum
Power-Added
Efficiency, %

61.67

PAE step=5

rangel [ : >max-6

range2 O : max-15

o o [m] O ©

Vi D
= 1 -
O \D Q
O
o © o O A %
N\
\ g >
v X
v X Y x %
v =
o - v
/% o e

range3 X : max-25

[CNE G G S Gi G

range4 V : max-35

O
o

indep(PAE_contours_p) (0.000 to 49.000) Max=61.6

(0.000 to 126.000) )/-(/
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IM3 load-pull, Modeled vs Measured

V27 H1503-901 720um”2 Vc¢=3.2V Ic=37mA
Pin=0dBm Gamm(2)=0.52<-117

|nde
Th|rd rdI D __contours_p=0.679/135.

e S S s IM3_modeled._step-2
ranged : -18—> -16
range2: O -16— -14
range3 V : -14— -12
Range4 +: -12— -10

_P

LLLLL

Range5 x: -10— -8

a
ThirdOrdIMD _contours

Ranger6 »:>-8

indep(ThirdOrdIMD__contours_p) (0.000 to 29.000) i
(0.000 to 108.000) X
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PAE load-pull for 2" harmonic, Modeled\

Vi R AT YN No obvious difference of
Pin=3dBm Gamm(1)=0.558<111
PAE, %

class F and inverse-F!
60.99 PAE modeled step=2.5
rangel OJ: max-3— max
range2 O : max-6 — max-3
o
[
E%%%%‘E‘JEE range3 x : max-10— max-6
[O)Re)Re)RE)RO) RO N o) N e
SEECEERS

range4 V : max-15— max-10

rangeS A : max-20— max-15

ranger6<>:<max-20

Max=56.7
indep(PAE_contours_p) (0.000 to 24.000)
(0.000 to 126.000)
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Pout load-pull for 2"¥ harmonic, Modeled

V27 H1503-901 720um™2 V=32V Ic=37mA [QSEUISUUSELI T
Pin=3dBm Gamm(1)=0.558<111 better than class F!

Cal. Pout,
dBm Pout modeled step=0.5
21.90]
- Range8 I 19.9— 20.9
a range9 O : 18.9— 19.9
TON- e 3 rangel0 x : 17.9— 18.9
55555553 rangell V : 15.9— 17.9
5

rangel2: 13.9— 15.9
rangel3: 10.9— 13.9
rangerl3: <10.9

indep(Pdel_contours_p) (0.000 to 23.000) \_
(0.000 to 126.000) -
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IM3 load-pull for 2"¢ harmonic, Modeled

V27 H1503-901 720um”2 Vc¢=3.2V Ic=37mA For IM3 inverse-F is

Pin=3dBm Gamm(1)=0.558<111
n m Gamm(1) also better than class F!

m1
indep(m1)=3
ThirdOrdIMD_contours_p=0.736 / 1p.224
level=-10.834816, number=1
impedance = Z0 * (3.019 + j3.197) IM3 modeled step=0.5
Minimum
.3,5.%?53? rangel 0 : -13— -12.5
“11.683-- range2 O : -12.5— -12
o range3 V : -12— -11
Range4 +: -11— -10
OO ONT™
Y YN
56568 Range5 «: -10— -8

hhh

ranger6:>-8

ThirdOrdIMD_contours

indep(ThirdOrdIMD_contours_p) (0.000 to 27.000) S l(Yw o R I( S' ‘

(0.000 to 126.000)
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Conclusion

* The problems with conventional large-signal PHEMT models are addressed that
include: dispersion, ‘non-charge-conservation’ originated from use of simple
equivalent circuit, etc

* Dispersion and ‘no-charge’ models are presented that overcome the difficulties

* The issues in HBT modeling in terms of mobile charge-modulation and Kirk
effects are addressed and modified MP and VBIC models are presented

* The models are verified with comprehensive load-pull results

* Class inverse-F with 2"d harmonic tuned at high impedance is recommended for
PHEMT PA design due to its higher PAE over class-F and is likely useful due to
its better linearity for HBT power amplifiers.
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