Power Amplifier Classes Based upon Harmonic Approximation and Lumped-element Loading Networks

(Invited Paper)

Ramon A. Beltran, PhD.

UCSD Power Amplifier Symposium September 2014

SKYWORKS[®]

Outline

- Class-A, AB, B, C, D, E and F Power Amplifiers
- True-transient Operation
- Harmonic Approximation
- Loading Network Topologies for Compact PAs
- Load-Pull Contours and Load Modulation
- Summary

Ideal Power Amplifier Theory *Voltage sources and switches*

Ideal Device

Power Amplifiers Practical Issues *Non-ideal voltage sources nor perfect switches*

Amplifier major practical issues:

At high frequency

Device package and technology

True-transient Operation is not possible

Harmonic Approximation can be used

Non Perfect Load Impedance Operation over VSWR

Ideal Power Amplifier Theory with Parasitics *Non-Ideal voltage sources and switches*

Waveform Coefficients for PA Design Efficiency vs. number of harmonics

SKYWORKS

Efficiency upon combination of harmonics (in %)

HARM		1	3		5	Infi	nite
1	Α	50	57	.74	60.33		63.7
2		70.71	F _{2,3} 81	.65	85.32		90.03
4		74.97	86	.56	90.45		95.45
Infinite	В	78.5	90	.69	94.77	D , E	100

F. H. Raab, "Maximum efficiency and output of class-F power amplifiers," IEEE Trans. Microwave Theory Tech., vol. 49, no. 6, pp. 1162 - 1166, June 2001.

Amplifier Design by Waveform Factors SKYWORKS Coefficient values upon number of harmonics $Po = \frac{\left(\gamma_V \cdot V_{eff}\right)^2}{2R_I}$ HARM γ_V 2 1.4142 $I_{DC} = \frac{\gamma_V \cdot V_{DD}}{\gamma_I R_I}$ 3 1.1547 1.0824 4 5 1.05146 $P_{DC} = V_{DD}I_{DC}$ Infinite 1.273 1.571

$$Efficiency = \frac{P_o}{P_{DC}} = \frac{\gamma_V \gamma_I V_{eff}^2}{2V_{DD}^2}$$

F. H. Raab, "Maximum efficiency and output of class-F power amplifiers," IEEE Trans. Microwave Theory Tech., vol. 49, no. 6, pp. 1162 - 1166, June 2001.

Class-A and AB PAs

Transmission-lines and Lumped Elements

Class-A or AB η = 50 to 60 % Z_{VD} = R_L

It doesn't require harmonic component neither in drain voltage nor in drain current waveforms

ST LDMOS FET PD57070

 $\gamma_V = 1$

 $\gamma_I = 1$

Class-B PA implementation

Transmission-lines and Lumped Elements

Class-B₂ $\eta = 70.71\%$ Z_{VD} = R_L at f₀ = 0 at 2f₀

$$\gamma_V = 1$$

$$\gamma_I = 1.4142$$

It requires harmonic component in drain current waveforms

GaN FET RF3931

Efficiency: 65%; Output power: 5 Watts; Frequency 144-MHz

DCB

Class-E Amplifier Reactances Impedances for ideal Class-E

Specific Drain Impedances Z_{VD}

Freq.	Ideal Class-E	
	R ₀ =10-Ohms	
f ₀	15.26+j11.064	←
2 f ₀	-j27.23	
3f ₀	-j18.15	
4f ₀	-j13.61	
5f ₀	-j10.89	
6f ₀	-j9.03	
7f ₀	-j7.78	
8f ₀	-j6.77	
9f ₀	-j6.05	
10f ₀	-j5.42	J

V_{DD} = 15 V Pout = 11.5-W

 $Z_{VD} = (1.526 + j1.106) \cdot R_0$

 $B_{s}=0.1836/R_{0}$ $X_{s}=1.15\cdot R_{0}$

 $X_n = -j5.4466 \cdot R_0 / n$

SKYWORKS

Class-E₂ Second harmonic Approximation to Class-E Operation

Efficiency: 67%; Output power: 10 Watts; Frequency 900-MHz

Class-E₂ Second harmonic Approximation to Class-E Operation

Fundamental and Second harmonic Impedances

Freq.	Class-E ₂
f ₀	8.86+j8.86
2f ₀	-j12.28
3f ₀	NA
4f ₀	NA
5f ₀	NA
6f ₀	NA
7f ₀	NA
8f ₀	NA
9f ₀	NA
10f ₀	NA

V_{DD} = 15 V Pout = 11.5-W

 $Z_{VD} = R_1 + jR_1$ $X_2 = -j1.414R_1$

Second harmonic voltage and current in phase quadrature (no power dissipation)

Class-E Multi-harmonic Approximation *Impedances for Class-E*₁₀

Class-E₁₀ $\eta = 85\%$ Z_{VD} = R_L+jX_L at f₀ = -j5.4466 · R₀/n at nf₀

Input Match

It requires harmonic drain currents and voltages with specific reactance values

20 0 10

0

0.5

1.0

1.5

time, nsec

2.0

GaN FET RF3931

Dipole

Efficiency: 85%; Output power: 10 Watts; Frequency 400-MHz

Broadband Trap

0.0

2.5

Class-E Multi-harmonic Approximation Impedances for Class-E₁₀

Comparison between ideal class-E and class-E₁₀

V_{DD} = 15 V Pout = 11.5-W

Freq.	Ideal Class-E	Class-E ₁₀	Ratio E ₁₀ /E
f ₀	15.26+j11.064	15.26+j11.064	1
2 f ₀	-j27.23	-j27.23	1
3f ₀	-j18.155	-j9.881	0.544
4f ₀	-j13.616	-j5.14 4	0.377
5f ₀	-j10.893	-j3.952	0.363
6f ₀	-j9.038	-j3.226	0.357
7f ₀	-j7.781	-j2.684	0.345
8f ₀	-j6.778	-j2.269	0.335
9f ₀	-j6.052	-j1.892	0.312
10f ₀	-j5.420	-j1.378	0.254

Class-F_{2,3} Power Amplifier Second and third harmonic

DDÇ

RF

OUT

DCB

Class-F_{2,3} $\eta = 81.65\%$ $Z_{VD} = R_L \text{ at } f_0$ $= 0 \text{ at } 2f_0$ $= \infty \text{ at } 3f_0$ $\gamma_V = 1.1547$ $\gamma_I = 1.4142$

It requires harmonic voltage and current at drain waveforms.

λ/4 at 2f

 $Z_{3f} = 0$

GaN FET GP2001 PolyFET

Efficiency: 81%; *Output power:* 17 *Watts; Frequency* 300-MHz

R_{VD} at f

0 at 2f

at 3f

Ln

Inverse Class-F_{2,3} Power Amplifier Second and third harmonic

V_{DD}

Class-F_{2,3} $\eta = 81.65\%$ $Z_{VD} = R_L \text{ at } f_0$ $= \infty \text{ at } 2f_0$ $= 0 \text{ at } 3f_0$ $\gamma_V = 1.1547$ $\gamma_I = 1.4142$

It requires harmonic voltage and current at drain waveforms.

Inverse Class-F

GaN FET GP2001 PolyFET

Efficiency: 79%; Output power: 17 Watts; Frequency 300-MHz

Impedances for PA classes *Impedances at intrinsic drain*

However, this is not the case for a real amplifier...

Symmetric combiner

Load Modulation for real PAs and Asymmetric Combining

SKYWORKS

- The power amplifier efficiency depends upon the number of controlled harmo......
- The harmonic impedances define the amplifier's output power capabilities and waveform shapes.
- Lumped-element output networks can serve for a wide frequency range.
- For a load modulated amplifier (i.e Doherty or Outphasing) take a look at the amplifiers load-pull contours, since they may need asymmetric combining.
- Not all real amplifiers can operate in either classic Doherty or Outphasing. However, DSP assisted PAs systems could overcome practical limitations by compensating phase and amplitude unbalance as well as other parameters such as linearity through predistortion.
- The transition between PA classes is one of the most common confusion in a real amplifier when it is tuned in the measurement bench.

Power Amplifier Classes Based upon Harmonic Approximation and Lumpedelement Loading Networks

Thank you all

Questions?