The Path to Efficient-yet-Linear Wattclass mmWave CMOS PAs: Device Stacking, Switch-mode Operation, Power Combining and Linearization

Ritesh Bhat, Anandaroop Chakrabarti and Harish Krishnaswamy

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Outline

- Motivation
- Stacking and Switch-mode Operation
- Large-scale Power Combining
- Linearized High Backoff-Efficiency Power DAC employing

Supply Switching and Dynamic Load Modulation

Conclusion

Motivation

- Operation at mmWave frequencies requires scaled technologies with low breakdown voltages, limiting the output power that can be generated from a single PA.
- Efficiency is limited by active and passive losses.

Motivation

- Output power and PAE degrade drastically at mmwave.
- Efficient unit cell PA design with high output power is challenging.

Can we get a watt of output power in CMOS at mmWave?

Outline

- Motivation
- Stacking and Switch-mode Operation
- Large-scale Power Combining
- Linearized High Backoff-Efficiency Power DAC employing

Supply Switching and Dynamic Load Modulation

Conclusion

Device Stacking in mmWave CMOS PAs

45 GHz 4-stack Class B/AB PA [Balteanu, RFIC 2012]

立^{400fF}

立 ^{450fF}

〒600fF

±^{800fF}

-28pH

≹1.8KΩ

🛓 3.3ΚΩ

≩3.3KΩ

≹3.3KΩ

≱1.3KΩ

Outn

15pH

15pH≥

15pH

15pH

8×64×1.25µm

Off-chip Load

2×64×1.25µm

Ţ

4×48×1.25µm

4×48×1.25µm

- Stacking increases output swing, eliminates the need for output matching to reach a desired output power level.
- Gain increases, thereby improving PAE

Can stacking be employed with switching class PAs?

Conventional Class-E PA Design

• Conventional Class E design enforces Zero Voltage Switching (ZVS) and Zero-Derivative of Voltage (ZdVS) for ideally 100% efficiency.

• This approach is sub-optimal when the switch and passive components contribute significant loss.

Loss-Aware mmWave Stacked Class-E

The stacked devices are assumed to behave like a single switching device with a linearly larger R_{on} and V_{dd}.

Loss-Aware mmWave Stacked Class-E

HIGHLIGHTS OF ANALYTICAL FORMULATION*

- Takes finite choke inductance (L_s) into account.
- Takes the effect of switch R_{ON} into account formally (but assumes $R_{ON} \ll 1/\omega C_{out}$).
- Takes into account passive loss.
- Takes into account input drive power.
- Load impedance is not chosen for Class E switching conditions (ZVS/ZdVS) but rather are varied to optimize PAE.
- Analytical equivalent to load-pull simulations.
- Provides a starting point for design optimization.

Loss-Aware mmWave stacked Class-E design methodology formally takes into account several mmWave non-idealities (device loss, input drive power, passive loss).

*Anandaroop Chakrabarti and Harish Krishnaswamy, "An Improved Analysis and Design Methodology for RF Class-E Power Amplifiers with Finite DC-feed Inductance and Switch On-Resistance," 2012 IEEE ISCAS.

Device Stacking in 45nm SOI at 45GHz

- P_{out} > 20dBm can be achieved by stacking without drastic penalty in PAE.
- Device size and current stress determine the maximum number of devices that can be stacked.
- The graphs represent fundamental limits on achievable performance in stacked CMOS Class-E-like PAs.

Chakrabarti, A; Krishnaswamy, H., "High-Power High-Efficiency Class-E-Like Stacked mmWave PAs in SOI and Bulk CMOS: Theory and Implementation," IEEE Transactions on Microwave Theory and Techniques, Aug. 2014

Stacking versus Power Combining

• Series stacking is compared with the power combining of multiple 2stack Class-E-like PAs using a tree of 2-way 50Ω Wilkinson combiners.

• Series stacking enables significantly higher efficiency for the same output power level.

Chakrabarti, A; Krishnaswamy, H., "High-Power High-Efficiency Class-E-Like Stacked mmWave PAs in SOI and Bulk CMOS: Theory and Implementation," IEEE Transactions on Microwave Theory and Techniques, Aug. 2014

Stacking vs. Impedance Transformation

 Series stacking is compared with the use of LC impedance transformers in conjunction with scaled 2-stack Class-E-like PAs.

• Series stacking enables significantly higher efficiency for the same output power level.

Chakrabarti, A; Krishnaswamy, H., "High-Power High-Efficiency Class-E-Like Stacked mmWave PAs in SOI and Bulk CMOS: Theory and Implementation," IEEE Transactions on Microwave Theory and Techniques, Aug. 2014

2-stacked 65nm Diff. Class E PA

Pseudo-differential, 2-stacked unit PA is designed based on the finitechoke, Class E design methodology.

2-stacked 45nm SOI Class E PA

Single-Ended 2-stacked Class E PA designed based on the Loss-Aware Millimeter-Wave Stacked-Class-E design methodology.

Anandaroop Chakrabarti and Harish Krishnaswamy, "High Power, High Efficiency Stacked mmWave Class-E-like Power Amplifiers in 45nm SOI CMOS," 2012 IEEE Custom Integrated Circuits Conference.

4-stacked 45nm SOI Class E PA

Single-Ended 4-stacked Class E PA designed based on the Loss-Aware Millimeter-Wave Stacked-Class-E design methodology.

Anandaroop Chakrabarti and Harish Krishnaswamy, "High Power, High Efficiency Stacked mmWave Class-E-like Power Amplifiers in 45nm SOI CMOS," 2012 IEEE Custom Integrated Circuits Conference.

Packaged 45GHz CMOS PAs

Packaged and connectorized Q-band stacked 45nm SOI CMOS Class-E-like PA has been transitioned to Northrop Grumman for insertion into a SATCOM demo.

Outline

- Motivation
- Stacking and Switch-mode Operation
- Large-scale Power Combining
- Linearized High Backoff-Efficiency Power DAC employing

Supply Switching and Dynamic Load Modulation

Conclusion

On-Chip Power Combining Challenges

and stability challenges.

Current Combining

 Increased load reduces power generated by each PA – no power combining benefit.

• Cascading 2:1 Wilkinsons results in increased loss.

• N:1 Wilkinsons are challenging due to high Z_0 required.

8-way Lumped λ/4 Power Combiner

- Large-scale 8-way power combining is used to enhance output power.
- Lumped equivalents of quarter-wave lines are used to easily achieve the necessary high Z_0 .

Combiner Performance

- Measurements closely correspond with EM simulations.
- Achieves **78%** peak efficiency in contrast to an 8-way 2:1 Wilkinson cascade which achieves only 63% at 45GHz.

45GHz 45nm SOI Watt-class PA

Eight unit cells (a two-stacked driver + a four-stacked main PA) power-combined using the eight-way lumpedelement $\lambda/4$ combiner.

45GHz 45nm SOI Watt-class PA

Ritesh Bhat, Anandaroop Chakrabarti and Harish Krishnaswamy, "Large-Scale Power-Combining and Linearization in Watt-Class mmWave CMOS Power Amplifiers," 2012 IEEE RFIC Symposium.

September 15, 2014

Watt-class PA S-Parameter Measurement

Peak S_{21} = 19.4dB at 50GHz with a 3dB BW of 13GHz.

September 15, 2014

Watt-Class PA Large-Signal Performance

Peak output power of >27dBm and -1dB flatness is observed in $P_{out,sat}$ and $P_{out,-1dB}$ from 33-46GHz.

Preliminary RF Probed Stress Test

- The PA is driven at the P_{out,sat} drive level for 12.5 hours on a probe station.
- Variations seen in output power and efficiency are small.

Comparison with CMOS mmWave PAs

Outline

- Motivation
- Stacking and Switch-mode Operation
- Large-scale Power Combining
- Linearized High Backoff-Efficiency Power DAC employing

Supply Switching and Dynamic Load Modulation

Conclusion

Motivation

- Power amplifiers have a linearity vs. efficiency tradeoff.
- High efficiency under back-off is essential to support complex modulation schemes.

Can linearity, large-scale power combining and better than Class B back-off efficiency co-exist?

September 15, 2014

Power DAC Approach

- Supply-switched power-combined DAC for multi-bit resolution & high average efficiency.
- Load modulation using non-isolating combiner facilitates linear DAC profile.

3-bit Digital-to-mmWave PA Array

First linearizing PA architecture at mmWave frequencies that simultaneously employs large-scale power combining for higher P_{out}, PA supply switching for higher efficiency under back-off, and load-modulation for linearization of switching PAs.

Supply-switched Class-E-like PA

- 1-bit supply-switched power DAC cell in 45nm SOI CMOS.
- 2-stacked Class-E PA unit cell augmented with digital switches to facilitate high-speed turn-on/turn-off.

Anandaroop Chakrabarti and Harish Krishnaswamy, "Design Considerations for Stacked Class-E-like mmWave HighSpeed Power DACs in CMOS," 2013 IEEE International Microwave Symposium.

September 15, 2014

1-bit Cell 1Gbps OOK Meas. @ 47GHz

Supply-switched unit cell can be turned on and off at ~1GHz rate.

Anandaroop Chakrabarti and Harish Krishnaswamy, "Design Considerations for Stacked Class-E-like mmWave HighSpeed Power DACs in CMOS," 2013 IEEE International Microwave Symposium.

September 15, 2014

$Z_{in} = Z_0^2 / (50 \text{xm}) = 25\Omega$

September 15, 2014

$Z_{\rm in} = Z_0^2 / (50 \,{\rm xm}) = 28.57 \,{\Omega}$

$Z_{in} = Z_0^2 / (50 \text{xm}) = 33.33 \Omega$

September 15, 2014

$Z_{in} = Z_0^2 / (50 \text{xm}) = 40 \Omega$

September 15, 2014

$Z_{in} = Z_0^2 / (50 \text{xm}) = 50 \Omega$

September 15, 2014

$Z_{in} = Z_0^2 / (50 \text{xm}) = 66.66 \Omega$

$Z_{\rm in} = Z_0^2 / (50 \,{\rm xm}) = 100 \,{\Omega}$

September 15, 2014

$Z_{\rm in} = Z_0^2 / (50 {\rm xm}) = 200 \Omega$

September 15, 2014

3-bit Digital-to-mmWave PA Array

Ritesh Bhat, Anandaroop Chakrabarti and Harish Krishnaswamy, "Large-Scale Power-Combining and Linearization in Watt-Class mmWave CMOS Power Amplifiers," 2012 IEEE RFIC Symposium.

September 15, 2014

Power DAC Output Power and Amplitude

PA Symposium 2014

42

System Performance

• Measurements show 8.2% peak DE and 6.2% peak PAE.

• A 2.5x improvement in drain efficiency and a 2x improvement in PAE at 6dB backoff over the baseline case where all PAs are always kept on.

Comparison to >20dBm/Linearized CMOS mmWave PAs

Outline

- Motivation
- Stacking and Switch-mode Operation
- Large-scale Power Combining
- Linearized High Backoff-Efficiency Power DAC employing

Supply Switching and Dynamic Load Modulation

Conclusion

Conclusion

- A comprehensive design methodology for stacked mmWave class-E PAs has been demonstrated.
- A low-loss power combining technique is shown which is used in conjunction with stacking to achieve watt-class output power at mmWave in CMOS.
- A direct digital-to-mmWave power DAC architecture which achieves high output power, linearity and back-off efficiency has been developed.
- Future work involving coexistence of high-resolution, linearity, high-power and high-efficiency under back-off is an exciting area of research.

Acknowledgements

- DARPA ELASTx program (Dr. S. Raman and Dr. Dev Palmer) and AFRL (Dr. R.Worley & Dr. P. Watson).
- Kunal Datta, John Roderick and Prof. Hossein Hashemi of USC for valuable discussions.