BROADBAND PA TECHNIQUES FOR EFFICIENCY ENHANCEMENT

Dr. Andrei Grebennikov

grebrei@ieee.org
BROADBAND POWER AMPLIFIER TECHNIQUES FOR EFFICIENCY ENHANCEMENT

1. Reactance compensation technique with series and parallel resonant circuits

2. Broadband parallel-circuit Class-E power amplifier

3. Fully integrated broadband CMOS Class-E power amplifier

4. Broadband Class-E power amplifier with series inductance

5. Broadband parallel Doherty amplifier

6. Inverted Doherty amplifier architecture

7. Broadband inverted GaN HEMT Doherty amplifier
1. Reactance compensation technique

Reactance compensation load networks with series and parallel resonant circuits

Input load-network reactance

\[
\text{Im} Z_{\text{net}}(\omega) = \omega L_s - \frac{1}{\omega C_s} - \frac{\omega' C_p}{(1/R)^2 + (\omega' C_p)^2}
\]

\[
\omega' = \omega \left(1 - \frac{\omega_0^2}{\omega^2} \right)
\]

\[
\omega_0 = \frac{1}{\sqrt{L_s C_s}} = \frac{1}{\sqrt{L_p C_p}}
\]

To maximize frequency bandwidth:

\[
\frac{d \text{Im} Z_{\text{net}}(\omega)}{d\omega} \bigg|_{\omega=\omega_0} = 0
\]

\[
C_p + \frac{1}{\omega_0^2 L_p} - \frac{2L_s}{R^2} = 0
\]

Equal loaded quality factors

\[
Q_L = \omega_0 C_p R = \omega_0 L_s / R
\]

1 - reactance provided by series resonant circuit
2 - reactance provided by parallel resonant circuit
3 – summation of both reactances with opposite slopes
1. Reactance compensation technique

Reactance compensation load networks with parallel and series resonant circuits

\[
Y_{\text{net}}(\omega) = \left(j\omega C_p + \frac{1}{j\omega L_p} + \frac{1}{R + j\omega L_s} \right)
\]

\[
\omega' = \omega \left(1 - \frac{\omega_0^2}{\omega^2} \right)
\]

\[
\omega_0 = \frac{1}{\sqrt{L_s C_s}} = \frac{1}{\sqrt{L_p C_p}}
\]

To maximize frequency bandwidth:

\[
\frac{d \text{Im} Y_{\text{net}}(\omega)}{d\omega} \bigg|_{\omega=\omega_0} = 0
\]

\[
C_p + \frac{1}{\omega_0^2 L_p} - \frac{2L_s}{R^2} = 0
\]

1 - susceptance provided by parallel resonant circuit

2 - susceptance provided by series resonant circuit

3 – summation of both susceptances with opposite slopes

Equal loaded quality factors

\[
Q_L = \omega_0 C_p R = \omega_0 L_s / R
\]
2. Broadband parallel-circuit Class E power amplifier

Optimum circuit parameters:

- **parallel inductance**

 \[L = 0.732 \frac{R}{\omega} \]

- **shunt capacitance**

 \[C = \frac{0.685}{\omega R} \]

- **load resistance**: highest value in Class E

 \[R = 1.365 \frac{V_{cc}^2}{P_{out}} \]

Inductive impedance at fundamental:

\[\phi = \tan^{-1}\left(\frac{R}{\omega L} - \omega RC \right) = 34.244^\circ \]

Optimum parameters for series resonant circuit in broadband Class-E mode:

\[L_0 = 1.026 \frac{R}{\omega_0} \]

\[C_0 = \frac{1}{\omega^2 L_0} \]
2. Broadband parallel-circuit Class E power amplifier

Transmission-line parallel-circuit Class-E GaAs HBT power amplifier for handset application: 1.75 GHz

- parameters of parallel transmission line is chosen to realize optimum inductive impedance at fundamental

- output matching circuit consisting of series microstrip line with two shunt capacitors should provide capacitive reactances at second and third harmonics

Collector voltage

Collector current

Current flowing through collector capacitor
2. Broadband parallel-circuit Class E power amplifier

1.71-1.98 GHz handset Class-E InGaP/GaAs HBT power amplifier: two-stage MMIC designed in 2001

![Diagram of a Class E power amplifier with bias circuits and shunt inductance.]
2. Broadband parallel-circuit Class E power amplifier

1.71-1.98 GHz handset Class-E InGaP/GaAs HBT power amplifier: two-stage MMIC designed in 2001

First device: 540 um²
Second device: 3600 um²
Die size: 0.9 x 1.0 mm²

DCS1800/PCS1900:
- \(P_{out} \geq 30 \text{ dBm} \)
- \(\text{PAE} \geq 51\% \)

WCDMA at 27 dBm output power:
- \(\text{ACPR} \leq -37 \text{ dBc} \)
- \(\text{PAE} \geq 38\% \)
3. Fully integrated broadband CMOS Class-E power amplifier

For LTE applications:
2.3-2.7 GHz

High resistivity substrate for high efficiency

Size: 1.7 x 1.6 mm²

Simulations:
- 2.32 GHz
- 2.52 GHz
- 2.68 GHz
3. Fully integrated broadband CMOS Class-E power amplifier

LTE test data: 16 QAM, 26.5 dBm, 2.5 GHz, $V_{dd} = 2.7$ V

ET disabled

ET enabled

35% overall efficiency
41.5% PA efficiency
ACLR1: 13-dB improvement
ACLR2: 7-dB improvement
4. Broadband Class-E power amplifier with series inductance

Reactance compensation load network with series inductance

- useful for packaged devices with series lead inductance
- shunt inductance and capacitance can be replaced by short-circuit and open-circuit stubs at microwaves
4. Broadband Class-E power amplifier with series inductance

Cree GaN HEMT
CGH27015P

- Bandwidth: 1.7–2.7 GHz
- Drain efficiency = 73±2%

- Power gain = 11±0.8 dB
- Output power = 42±0.8 dBm
5. Broadband parallel Doherty amplifier

Classical Doherty architecture

- **Carrier**
- **PA**
- **Peaking**

Impedance transformation
- **high-power region**
 (carrier and peaking PAs are ON):
 \[50 \, \Omega \Rightarrow 25 \, \Omega \Rightarrow 50 \, \Omega \]
- **low-power region**
 (carrier PA is ON and peaking PA is OFF):
 \[100 \, \Omega \Rightarrow 25 \, \Omega \Rightarrow 50 \, \Omega \]

Impedance transformation ratio = 4

Loaded quality factor \[Q_L = \sqrt{4-1} = 1.73 \]

Parallel Doherty architecture

- **Carrier**
- **PA**
- **Peaking**

Impedance transformation
- **high-power region**
 (carrier and peaking PAs are ON):
 \[50 \, \Omega \Rightarrow 100 \, \Omega \Rightarrow 50 \, \Omega \]
- **low-power region**
 (carrier PA is ON and peaking PA is OFF):
 \[100 \, \Omega \Rightarrow 50 \, \Omega \]

Impedance transformation ratio = 2

Loaded quality factor \[Q_L = \sqrt{2-1} = 1 \]
5. Broadband parallel Doherty amplifier

Low-power region (peaking amplifier is OFF)

Classical

Parallel

Half-wave ($\lambda/4 + \lambda/4$) line translates open circuit at peaking amplifier output to carrier path
5. Broadband parallel Doherty amplifier

Parallel Doherty architecture based on broadband Class-E amplifiers with 15-W Cree CGH27015P devices: simulation

Small-signal S_{21}

2.0-2.8 GHz
5. Broadband parallel Doherty amplifier

Parallel Doherty architecture based on broadband Class-E amplifiers with 15-W Cree CGH27015P devices: test board

Broadband (2-4 GHz)
Anaren 3-dB coupler

Single-carrier 5-MHz WCDMA signal, PAR = 6.5 dB:

- $V_{dd} = 28$ V
- $P_{out} = 39$ dBm
- **Gain** = 10 dB
- Drain efficiency $= 45\%$ (2.14 GHz) $\quad 40\%$ (2.655 GHz)
- $\text{ACLR} = -32$ dBc $\quad -29$ dBc

2.14 GHz
10-MHz LTE signal

Figure showing measurement data and circuit board.
6. Inverted Doherty amplifier architecture

- quarterwave transmission line is connected to output of peaking amplifier if it is easier to provide short-circuit condition instead of open circuit for peaking amplifier in low-power region

- offset lines are necessary to compensate for peaking device parasitics and provide open-circuit condition seen by carrier amplifying path in low-power region

- required 90° phase shift is provided in input circuit of carrier amplifier
6. Inverted Doherty amplifier architecture

- carrier device should see high impedance in low-power region providing by output matching circuit
- offset line is necessary to compensate for peaking device parasitics and provide short-circuit condition at its output in low-power region
- for three-stage inverted Doherty amplifier, drain efficiency of 40% with power gain of 9 dB achieved at 42 dBm (8.5 dB backoff) at 2.14 GHz

7. Broadband inverted GaN HEMT Doherty amplifier

Low-power region (peaking amplifier is OFF)

Classical

Quarterwave line translates short circuit at peaking amplifier output to open circuit seen by carrier path and extends bandwidth

Inverted

Inverted Doherty PA

Two-section output transformer

\(25 \, \Omega \rightarrow 50 \, \Omega\)
7. Broadband inverted GaN HEMT Doherty amplifier

Circuit schematic using two broadband Class-E power amplifiers for carrier and peaking amplifying paths

Carrier

- Substrate: 20-mil RO4360

Peaking

- Two-section output transformer
- Open circuit in low-power region
7. Broadband inverted GaN HEMT Doherty amplifier

Inverted Doherty architecture based on broadband Class-E amplifiers with 15-W Cree CGH27015P devices: simulation

Inductive impedance at fundamental seen by carrier device in low-power region

Low reactance seen at peaking amplifier output in low-power region

High reactance presented by peaking amplifying path in low-power region
7. Broadband inverted GaN HEMT Doherty amplifier

Inverted Doherty architecture based on broadband Class-E amplifiers with 15-W Cree CGH27015P devices: simulation

Small-signal S_{21}

![Graph showing small-signal S_{21} over frequency from 1.6 to 3.0 GHz]

![Graph showing power gain and efficiency over output power and frequency for various frequencies: 1842.5 MHz, 2140 MHz, 2655 MHz]
7. Broadband inverted GaN HEMT Doherty amplifier

Inverted Doherty architecture based on broadband Class-E amplifiers with 15-W Cree CGH27015P devices: test board

Broadband (690-2700 MHz)
Anaren 3-dB coupler

Single-carrier
5-MHz WCDMA signal
PAR = 6.5 dB:

\[V_{dd} = 28 \text{ V} \]
\[P_{out} = 38 \text{ dBm} \]
\[\text{Gain} = 11 \text{ dB} \]
\[\text{Drain efficiency} = 52\% \ (1.85 \text{ GHz}) \quad 50\% \ (2.15 \text{ GHz}) \quad 42\% \ (2.65 \text{ GHz}) \]
\[\text{ACLR} = -32 \text{ dBc} \quad -34 \text{ dBc} \quad -37 \text{ dBc} \]