A 1.1-Gbit/s, 23-dBm, 10-GHz Outphasing Modulator with 60-dB Dynamic Range

Mohammad Mehrjoo, Samet Zihir

Gabriel Rebeiz, James Buckwalter

Department of Electrical and Computer Engineering University of California, San Diego

Outline

- Introduction
- System level of the proposed modulator
- Circuit design of the key building blocks
- Measurement results
- Conclusion

Introduction

■ Tradeoff between linearity and efficiency in PAs.

	Linearity	Efficiency	Modulation
PA class A, AB	high	low	Amplitude
PA class D, E	low	high	Phase

OFDM, multi-channels of QAM, high PAPR —> High linear PAs

- Two low linearity high efficiency PAs, rather than one high linearity low efficiency PA.
- Outphasing, Linear Amplification with Nonlinear Components (LINC)

Outphasing Concept

Block Diagram

Submitted, JSSC

Key Building Blocks (Baseband)

- Digital-to-analog-converter (DAC)
- How many bits are needed?

- DAC floor plan.

DR as a Function of the Phase Error $S_1(t) = \frac{A_{max}}{2}\cos(\omega t + \theta(t) + \phi(t))$ Outphased signals in the presence of phase error: $S_2(t) = \frac{A_{max}}{2}\cos(\omega t + \theta(t) - \phi(t) + \delta)$ 85 DR as a function of δ 80 $DR = 10 \log_{10} \frac{4}{\delta^2}$ 75 Dynamic Range (dB) 55 50 45 0.2 0.1 0.3 0.4 0.5 0 Slide 7 δ (°)

Phase Res. vs Outphasing Angle The phase resolution provided by a DAC is higher as Φ increases.

Phase resolution at Φ close to 90° determines the DR.

DAC Floor Plan

5 thermometer MSB and 5 binary LSB bits.

Mehrjoo and Buckwalter, JSSC 14

Key Building Blocks (RF)

- Quadrature double-balanced mixer
- How linear is the mixer?
- LO routing on the chip

Mixer and Stacked-FET Buffer

Mixer Linearity

Simulated OIP3 and P1dB.

Two-tone test with LO at 10 GHz and IF at 10 and 11 MHz.

One-tone test with LO at 10 GHz and IF at 10 MHz.

LO Chain

Chip Photo

Block	Power	
BIUCK	Consumption	
Staked-FET		
+	280mA	
Mixer	From	
+	4V	
DAC		
	235mA from	
DAC	1.5V	
LO Chain	78mA from	
LO Chain	1.5V	
Digital	135mA from	
Digital	1V	
Total	1.72W	

- 45nm SOI technology
- Area = 9 mm²
- Testing on board

Measurement Setup

16GHz DEMUX limits the bandwidth to 400MHz.

Calibration

Calibrating both I/Q channels.

LO at 10GHz and IF at 10MHz.

High resolution DACs can adjust the dc level and swing amplitude to improve the measured LO leakage and sideband suppression.

Measured P1dB and OIP3

Current Swing is limited by DAC current. P1dB is slightly larger than 20dBm.

(Simulated P1dB=21.8dBm) (Simulated OIP3=34.2dBm)

Measured Dynamic Range

60.3 dB DR with less than 1-dB steps.

Constant Envelop Outphased Signals

10MHz 256QAM waveform at 10GHz.

Measured 16QAM

10MHz 6.1dB PAPR 2.1% EVM -37.0dBc ACLR

133MHz 6.6dB PAPR 3.4% EVM -35.1dBc ACLR

Measured 64QAM

10MHz 6.6dB PAPR 2.2% EVM -36.9dBc ACLR

133MHz 7.1dB PAPR 3.5% EVM -35.2dBc ACLR

Measured 256QAM

Log 10

dB/

10MHz 6.3dB PAPR 2.2% EVM -37dBc ACLR

133MHz

7.2dB PAPR

3.5% EVM

Center 10.000 GHz Span 600 MHz Log 10 dB/ Annua Ann All -35.2dBc ACLR Lower Adjacent **Upper Adjacent** Main Channel Channel Channel Center 10.000 GHz Span 600 MHz

Capable of 1.1Gbit/s data transmission.

Measured LTE

100-MHz LTE carrier aggregation.

8.3dB PAPR.

-35.9dBc ACLR.

Conclusion

- Microwave outphasing modulator including all the system blocks from digital to RF on-chip.
- Using 10-bit DACs, modulator provides a 60dB dynamic range.
- Modulator is capable of transmitting 100-MHz
 LTE and 1.1Gbit/s 256QAM waveforms.
- Each channel delivers 20dBm which is sufficient to drive high-power off-chip PAs without need for any pre-amplification.

Back up Slides

- Stacked-FET Structure
- SOI vs Bulk CMOS
- How does current bleeder improve the linearity?

Stacked-FET Current Buffer

Keeping the voltage across the individual transistors below the breakdown.

CMOS SOI for Stacking

- No shared body.
 - Necessary for stacking
 - Triple well in bulk CMOS or CMOS SOI
- Buried oxide is much thicker than depletion region.
 - Lower parasitic capacitances for SOI

Current Bleeder

Current bleeder improves the linearity:

 M₁ always on, constant parasitic capacitance

VD V_{G} 0.67WLC_{ox}+WC_{ov} 0.5WLCox+WCov Saturation Triode **WC**_{ov} \mathbf{C}_{GD} Off $V_{D}+V_{TH}$ V_{TH} V_{GS}

Slide 28

Z_{in}

Current Bleeder

Current bleeder improves the linearity:

Less variation in Z_{in}

