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Outline 

•  Introduction 
•  System level of the proposed modulator 
•  Circuit design of the key building blocks 

•  Measurement results 

•  Conclusion 
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Introduction 
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Linearity Efficiency Modulation 
PA class A, AB high low Amplitude 

PA class D, E low high Phase 

OFDM, multi-channels of QAM, high PAPR            High linear PAs 

n  Outphasing, Linear Amplification with Nonlinear 
Components (LINC) 

n  Tradeoff between linearity and efficiency in PAs. 

n  Two low linearity high efficiency PAs, rather than one 
high linearity low efficiency PA. 



Outphasing Concept 

Amplitude / Phase 
Modulation 
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Phase 
Modulation 

High Efficiency 
Low Linearity 

Power 
Combiner 



Block Diagram 
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Key Building Blocks (Baseband) 

•  Digital-to-analog-converter (DAC) 
•  How many bits are needed? 
•  DR                     Phase Error 

•  Phase Resolution         DAC number of bits 

•  DAC floor plan. 
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DR as a Function of the Phase Error 
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Outphased signals in the 

presence of phase error:   

DR as a function of δ 



Phase Res. vs Outphasing Angle  
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The phase resolution provided by a DAC is higher as 

Φ increases. 

Phase resolution at Φ close to 90o determines the DR. 

Minimum 10 bits 

are needed for a 

phase resolution 

better than 0.1o.  



DAC Floor Plan 
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5 thermometer MSB and 5 binary LSB bits. 
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Key Building Blocks (RF) 

•  Quadrature double-balanced mixer 
•  How linear is the mixer? 
•  LO routing on the chip 
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Mixer and Stacked-FET Buffer 

Each channel generates 

20 dBm to derive off-chip 

GaN/GaAs PA. 
 

Stacked-FET current 

buffer to prevent from 

break down. 
 

Current Bleeder for high 

linearity. 
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Mixer Linearity 

Simulated OIP3 and 

P1dB. 
 

Two-tone test with LO at 

10 GHz and IF at 10 and 

11 MHz. 
 

One-tone test with LO at 

10 GHz and IF at 10 MHz. 
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LO Chain 

Single-ended 
external LO 

Send the LO to 
both channels 



Chip Photo 
Block Power 

Consumption 
Staked-FET 

+ 
Mixer 

+ 
DAC 

280mA 
From 

4V 

DAC 235mA from 
1.5V 

LO Chain 78mA from 
1.5V 

Digital 135mA from 
1V 

Total 1.72W 

n  45nm SOI technology 
n  Area = 9 mm2 

n  Testing on board 
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Measurement Setup  
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30GHz 16GHz 20GHz 

16GHz DEMUX limits the bandwidth to 400MHz. 



Calibration 

Slide 16 

Calibrating both I/Q channels. 
 

LO at 10GHz and IF at 10MHz. 
 

High resolution DACs can 

adjust the dc level and swing 

amplitude to improve the 

measured LO leakage and 

sideband suppression. 



Measured P1dB 
and OIP3 
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Current Swing is limited by 

DAC current. P1dB is 

slightly larger than 20dBm. 
 

(Simulated P1dB=21.8dBm) 

(Simulated OIP3=34.2dBm)  
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Measured Dynamic Range 

60.3 dB DR with less than 1-dB steps. 
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Constant Envelop Outphased Signals 

10MHz 256QAM waveform at 10GHz. 



Slide 20 

Measured 16QAM 

10MHz 
6.1dB PAPR 
2.1% EVM 
-37.0dBc ACLR 

133MHz 
6.6dB PAPR 
3.4% EVM 
-35.1dBc ACLR 
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Measured 64QAM 

10MHz 
6.6dB PAPR 
2.2% EVM 
-36.9dBc ACLR 

133MHz 
7.1dB PAPR 
3.5% EVM 
-35.2dBc ACLR 
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Measured 256QAM 

Capable of 1.1Gbit/s data transmission. 

10MHz 
6.3dB PAPR 
2.2% EVM 
-37dBc ACLR 

133MHz 
7.2dB PAPR 
3.5% EVM 
-35.2dBc ACLR 
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Measured LTE 

100-MHz LTE carrier aggregation. 

8.3dB PAPR. 

-35.9dBc ACLR. 



Conclusion 
•  Microwave outphasing modulator including all 

the system blocks from digital to RF on-chip. 
•  Using 10-bit DACs, modulator provides a 60dB 

dynamic range. 
•  Modulator is capable of transmitting 100-MHz 

LTE and 1.1Gbit/s 256QAM waveforms. 
•  Each channel delivers 20dBm which is 

sufficient to drive high-power off-chip PAs 
without need for any pre-amplification. 
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Back up Slides 

•  Stacked-FET Structure 
•  SOI vs Bulk CMOS 
•  How does current bleeder improve the 

linearity? 
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Stacked-FET Current Buffer 
Keeping the voltage across the individual transistors below the breakdown. 
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CMOS SOI for Stacking 
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Bulk CMOS 

SOI CMOS 

Triple Well Bulk 
CMOS 

•  No shared body.  
–  Necessary for stacking 
–  Triple well in bulk CMOS or CMOS 

SOI 

•  Buried oxide is much thicker than 
depletion region.  
–  Lower parasitic capacitances for SOI 



Current Bleeder 

Lin et al., 
JSSC’ 2009 

Current bleeder improves 
the linearity: 

n  M1 always on, constant 
parasitic capacitance 

n  Zin 
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Current Bleeder 

higher IB  
higher gm  
lower Zin 

higher IB 
triode, lower gm 
higher Zin 

Current bleeder improves 
the linearity: 
n  Less variation in Zin 
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