The Impact of Electro-Thermal Coupling on RF Power Amplifiers

Matthew Ozalas Keysight Technologies SANTA ROSA, CA

Review of Heating in Active Devices:

Self Heating Mutual Heating Transient Heating

(+ different approaches to modeling these)

Mutual Heating Self Heating Terms Self Heating VDC R_{13} CONVERTED TO RF IDC. Transmitted into OMN $R_{ij} =$ R_{22} Power OUTPUT **RF OUT** MATCHING Amplifier NETWORK SENT THROUGH RF IN $R_{ij} = \frac{\Delta T_i}{\Delta P_i}$ Dissipated as heat $T_{device} = T_{ambient} + R_{th} * Pdiss$ $Rth = \frac{1}{2\kappa(L-W)} \ln\left(\frac{L(W+2t_{sub})}{W(L+2t_{sub})}\right)$ Substrate Spreading Term (for rectangular geometries L>W) **Thermal Conductivity**

Device Heating Basics:

Transient Thermal Response

Keysight GaAs HBT Test Device (Probe) Transient pulse applied to Vcollector

(Log Scale for time)

Lumped Modeling Approach

Electro-thermal Modeling Approach

Lumped Thermal RC vs. Full 3D Electro-thermal

VS

Review of Heating in Active Devices:

Areas where heating is impactful to PA Design:

Self Heating Mutual Heating Transient Heating Long Term Failure

- Thermal Stability / Balance

- Device and Circuit Performance

– Memory Effects

Context: Commercial WLAN PA (HBT)

Test Case: Two Different IC Layouts, Identical Schematic

- Here we have two schematically identical WLAN PA layouts to demonstrate the differences between modeling approaches. The three conditions are:
 - Isolated Self Heating Simulation (Static Thermal Network, Internal to AHBT Model)
 - Full Electro-thermal Simulation with moderately thermal-coupled bias networks
 - Full Electro-thermal Simulation with a poorly thermal-coupled bias network

Temperature Coupling and Memory Effects

... Apply a low frequency RF power pulse

Tmir < Trf, Ibias ↑, Gain ↑

Bias Configuration

Simulation Results

Transient Simulation with mutual heating between RF and bias device for different layout configurations

These plots compare:

Isolated Self Heating Model Mutual Heating Model, thermally decoupled Mutual Heating Model, thermally coupled

Closing

- Modeling distributed heating is critical in RF Power Amplifier
 Design, especially for low frequency phenomena such as memory effects or device-to-device interaction
- Memory effects at low frequencies might be due to:
 - Cross-circuit, layout-dependent mutual heating
 - Distributed heating on longer time scales
- This is a case where full Electro-thermal analysis is useful in the design process because it predicts problems that the intrinsic thermal RC network inside the device model does not

Thanks!

Feel free to contact me with any additional questions:

matthew_ozalas@keysight.com

